

Motivation

Lovász (1967) proved that graphs G and H are isomorphic if and only if they are homomorphism indistinguishable over all graphs F the number of homomorphisms $F \rightarrow G$ equals the number of homomorphisms $F \rightarrow H$.

Homomorphism indistinguishability over restricted graph classes gives rise to a wide range of equivalence relations which can be characterised in terms of systems of equations. For example, graphs G and H are homomorphism indistinguishable over cycles/trees/path if and only if the system $XA_G = A_HX$ has an invertible/doublystochastic/pseudo-stochastic solution $X \in \mathbb{C}^{V(H) \times V(G)}$. We set out to provide a uniform explanation for such results.

> Linear Algebra and Representation Theory, Labelled and Bilabelled graphs

Homomorphism Indistinguishability **Unified Algebraic** Framework

Matrix Equations X s.t. $XA_G = A_H X$

Paths, trees, cycles, graphs of bounded -width, trees of bounded degree

Labelled Graphs and Homomorphism Tensors

A labelled graph F is a tuple of a graph F and a vertex $u \in V(F)$. Given a graph G, the homomorphism tensor of F is $F_G \in \mathbb{C}^{V(G)}$ where

 $F_G(v) \coloneqq$ number of homomorphisms $h: F \to G$ such that h(u) = v

for all $v \in V(G)$. This can be extended to *bilabelled graphs* $F = (F, u_1, u_2)$ which carry an *in-label* $u_1 \in V(F)$ and an *out-label* $u_2 \in V(F)$. Their homomorphism tensors \mathbf{F}_G represent matrices in $\mathbb{C}^{V(G) \times V(G)}$.

Example For every graph G, the homomorphism tensor A_G of the bilabelled graph $A = \overset{1}{\bullet} \overset{2}{\bullet}$ is the adjacency matrix of G.

Operations

Combinatorial operations on (bi)labelled graphs correspond to algebraic operations on homomorphism tensors.

- The sum-of-entries soe \mathbf{F}_G equals $\hom(F, G)$, the homomorphism count of the underlying unlabelled graph F of F.
- The matrix product $F_G \cdot F'_G$ equals the homomorphism matrix of the bilabelled graph obtained from F and F' by series composition.
- The Schur product $F_G \odot F'_G$ equals the homomorphism vector of the labelled graph obtained from F and F' by gluing.

Example The bilabelled graph $\frac{1}{2} - \frac{2}{3}$ results from the series composition $\frac{1}{2} - \frac{2}{3} - \frac{1}{3} - \frac{2}{3}$. Its homomorphism matrix is $oldsymbol{A}_G^2 = oldsymbol{A}_G \cdot oldsymbol{A}_G$.

Homomorphism Tensors and Linear Equations Martin Grohe, Gaurav Rattan, and Tim Seppelt

RWTH Aachen University

Inner-Product Compatible Graph Classes

Using linear algebra, we obtain matrix equations for homomorphism indistinguishability over classes of labelled graphs \mathcal{R} which are

- inner-product compatible, i.e. for all $m{R}, m{S} \in \mathcal{R}$ the homomorphism counts from the graph obtained by gluing $oldsymbol{R}$ and $oldsymbol{S}$ and forgetting labels, are equal to the homomorphism counts from some graph in \mathcal{R} , and
- A-invariant, i.e. for every labelled graph $R = (R, u) \in \mathcal{R}$, the labelled graph $A \cdot R$ obtained by adding a fresh vertex u' to R, adding the edge uu', and placing the label on u', is also in \mathcal{R} .

Example The family of labelled paths with labels at end vertices is inner-product compatible. For example,

 $\operatorname{soe}\left(\begin{array}{cc}1&\bullet&\bullet\\\bullet&\bullet&\bullet\end{array}\right) = \operatorname{soe}\left(\begin{array}{cc}1&\bullet&\bullet\\\bullet&\bullet&\bullet\end{array}\right) = \bullet\bullet\bullet\bullet = \operatorname{soe}\left(\begin{array}{cc}1&\bullet\bullet\bullet\\\bullet&\bullet\bullet\end{array}\right)$

It is also A-invariant. For example, $A \cdot \frac{1}{6} = \frac{1}{6} \cdot \frac{2}{6} = \frac{1}{6} \cdot \frac{2}{6} = \frac{1}{6} \cdot \frac{2}{6} = \frac{1}{6} \cdot \frac{2}{6} \cdot \frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{6} \cdot \frac{2}{6} \cdot \frac{1}{6} \cdot \frac{1$

IPC-Theorem Let \mathcal{R} be an inner-product compatible and A-invariant family of labelled graphs containing $\frac{1}{2}$. Then for graphs G and H the following are equivalent: 1. G and H are homomorphism indistinguishable over \mathcal{R} , 2. There exists a pseudo-stochastic $X \in \mathbb{Q}^{V(H) \times V(G)}$ such that $X \mathbf{R}_G = \mathbf{R}_H$ for all $oldsymbol{R}\in\mathcal{R}.$

Trees and Paths

We apply our theorem to the classes of trees and paths and prove known characterisation of homomorphism indistinguishable over these classes in a uniform manner. In particular, we find a combinatorial explanation for the obscurity that these characterisations differ only in the constraint $X \ge 0$.

Homomorphism Indistinguishability

IPC-Theorem $\forall \mathbf{R} \in \mathcal{R}. \ X \mathbf{R}_G = \mathbf{R}_H$

Paths vacuous

Trees of Bounded Degree

Characterising homomorphism indistinguishability over graph classes of bounded degree is a notoriously difficult problem. For trees of bounded degree, we prove the following.

Theorem For every $d \in \mathbb{N}$, there exist graphs G and H such that • G and H are homomorphism indistinguishable over trees of degree $\leq d$ and • G and H are not homomorphism indistinguishable over all trees.

In particular, it is not possible to simulate the 1-dimensional Weisfeiler-Leman algorithm (Colour Refinement) by counting homomorphisms from trees of bounded degree.

Background image: 'Bicycle race scene. A peloton of six cyclists crosses the finish line in front of a crowded grandstand, observed by a referee.' (1895) by Calvert Lithographic Co., Detroit, Michigan, Public Domain, via Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Bicycle_race_scene,_1895.jpg

Matrix Equations X s.t. $XA_G = A_H X$

Trees $X \geq 0$

Specht–Wiegmann Theorem

We use representation theory to derive novel matrix equations characterising homomorphism indistinguishability. The recipe is the following:

- $\mathcal{P} = \{ \begin{array}{c} 1,2 \\ \bullet \end{array}, \begin{array}{c} 1 \\ \bullet \end{array}, \begin{array}{c} 1 \\ \bullet \end{array}, \begin{array}{c} 1 \\ \bullet \end{array}, \begin{array}{c} 2 \\ \bullet \end{array}, \begin{array}{c} 1 \\ \bullet \end{array}, \begin{array}{c} 2 \\ \bullet \end{array}, \begin{array}{c} 1 \\ \bullet \end{array}, \begin{array}{c} 2 \\ \bullet \end{array}, \begin{array}{c} 1 \\ \bullet \end{array}, \begin{array}{c} 2 \\ \bullet \end{array}, \end{array} \}.$
- morphism tensor P_G .
- equation arises from the following theorem: tions of an involution monoid Γ . Then the following are equivalent: **1.** For all $g \in \Gamma$, soe $\psi(g) = \operatorname{soe} \varphi(g)$.

Graphs of Bounded Pathwidth

Extending the known characterisation of homomorphism indistinguishability over graphs of treewidth $\leq k$ in terms of the existence of a *non-negative* solution to the Sherali–Adams-style relaxation $L_{iso}^{k+1}(G, H)$ of the ILP for graph isomorphism, we prove the following:

Theorem Let $k \in \mathbb{N}$. Graphs G and H are homomorphism indistinguishable over graphs of pathwidth $\leq k$ if and only if $L_{iso}^{k+1}(G, H)$ has a *rational* solution.

Our techniques yield a novel system of equations characterising homomorphism indistinguishable over graphs of bounded treedepth.

Theorem Let $k \in \mathbb{N}$. Graphs G and H are homomorphism indistinguishable over graphs of treedepth $\leq k$ if and only if the system of equations stated below has a rational solution.

$$\sum_{V' \in V(G)} X(\boldsymbol{w}w, \boldsymbol{v}v') = X(\boldsymbol{w}, \boldsymbol{v})$$
 $\sum_{V' \in V(H)} X(\boldsymbol{w}w', \boldsymbol{v}v) = X(\boldsymbol{w}, \boldsymbol{v})$

 $X(\boldsymbol{w}, \boldsymbol{v}) = 0$

X((),()) =

References

[1] M. Grohe, G. Rattan and T. Seppelt. 'Homomorphism Tensors and Linear Equations'. In: 49th International Colloquium on Automata, Languages, and Programming, ICALP 2022, July 4-8, 2022, Paris, France. Ed. by M. Bojańczyk, E. Merelli and D. P. Woodruff. Vol. 229. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi: 10.4230/LIPIcs.ICALP.2022.26.

1. Definition of an involution monoid, for example the *path monoid*

2. For a graph G, define a representation $\mathcal{P} \to \mathbb{C}^{V(G) \times V(G)}$ mapping \boldsymbol{P} to its homo-

3. The sum-of-entries of this representation counts the homomorphisms of interests. It can be interpreted as a character of a certain subrepresentation. The desired matrix

Theorem Let $\varphi \colon \Gamma \to \mathbb{C}^{V \times V}$ and $\psi \colon \Gamma \to \mathbb{C}^{W \times W}$ be finite-dimensional representa-

2. There exists a pseudo-stochastic $X \in \mathbb{C}^{W \times V}$ such that $X\varphi(g) = \psi(g)X$.

Graphs of Bounded Treedepth

,)	for all $w \in V(H)$ and $\boldsymbol{v} \in V(G)^{\ell}$,
	$\boldsymbol{w} \in V(H)^{\ell}$ where $0 \leq \ell < k$.
)	for all $v \in V(G)$ and $\boldsymbol{v} \in V(G)^{\ell}$,
	$\boldsymbol{w} \in V(H)^{\ell}$ where $0 \leq \ell < k$.
0	$if not \; \boldsymbol{v}_i = \boldsymbol{v}_{i+1} \iff \boldsymbol{w}_i = \boldsymbol{w}_{i+1}$
	for all $i < k$.
1	for the empty tuple ().