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Motivation
Lovász (1967) proved that graphs G and H are isomorphic if and only if they are
homomorphism indistinguishable over all graphs F the number of homomorphisms
F → G equals the number of homomorphisms F → H.

Homomorphism indistinguishability over restricted graph classes gives rise to a wide
range of equivalence relations which can be characterised in terms of systems of
equations. For example, graphs G and H are homomorphism indistinguishable over
cycles/trees/path if and only if the system XAG = AHX has an invertible/doubly-
stochastic/pseudo-stochastic solution X ∈ CV (H)×V (G). We set out to provide a
uniform explanation for such results.
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Labelled Graphs and Homomorphism Tensors
A labelled graph F is a tuple of a graph F and a vertex u ∈ V (F ). Given a graph G,
the homomorphism tensor of F is FG ∈ CV (G) where

FG(v) := number of homomorphisms h : F → G such that h(u) = v

for all v ∈ V (G). This can be extended to bilabelled graphs F = (F, u1, u2) which
carry an in-label u1 ∈ V (F ) and an out-label u2 ∈ V (F ). Their homomorphism
tensors FG represent matrices in CV (G)×V (G).

Example For every graph G, the homomorphism tensor AG of the bilabelled graph

A = 1 2 is the adjacency matrix of G.

Operations
Combinatorial operations on (bi)labelled graphs correspond to algebraic operations on
homomorphism tensors.
�The sum-of-entries soeFG equals hom(F,G), the homomorphism count of the un-
derlying unlabelled graph F of F .

�The matrix product FG · F ′
G equals the homomorphism matrix of the bilabelled

graph obtained from F and F ′ by series composition.

�The Schur product FG⊙F ′
G equals the homomorphism vector of the labelled graph

obtained from F and F ′ by gluing.

Example The bilabelled graph 1 2 results from the series composition 1 2 · 1 2 .
Its homomorphism matrix is A2

G = AG ·AG.

Inner-Product Compatible Graph Classes
Using linear algebra, we obtain matrix equations for homomorphism indistinguishability
over classes of labelled graphs R which are

� inner-product compatible, i.e. for all R,S ∈ R the homomorphism counts from the
graph obtained by gluing R and S and forgetting labels, are equal to the homo-
morphism counts from some graph in R, and

�A-invariant, i.e. for every labelled graph R = (R, u) ∈ R, the labelled graph A ·R
obtained by adding a fresh vertex u′ to R, adding the edge uu′, and placing the label
on u′, is also in R.

Example The family of labelled paths with labels at end vertices is inner-product
compatible. For example,

soe
(

1 ⊙ 1
)
= soe

(
1

)
= = soe

(
1

)
It is also A-invariant. For example, A · 1 = 1 2 · 1 = 1 .

IPC-Theorem Let R be an inner-product compatible and A-invariant family of la-

belled graphs containing 1 . Then for graphs G and H the following are equivalent:

1.G and H are homomorphism indistinguishable over R,

2. There exists a pseudo-stochastic X ∈ QV (H)×V (G) such that XRG = RH for all
R ∈ R.

Trees and Paths
We apply our theorem to the classes of trees and paths and prove known character-
isation of homomorphism indistinguishable over these classes in a uniform manner. In
particular, we find a combinatorial explanation for the obscurity that these character-
isations differ only in the constraint X ≥ 0.
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Trees of Bounded Degree
Characterising homomorphism indistinguishability over graph classes of bounded degree
is a notoriously difficult problem. For trees of bounded degree, we prove the following.

Theorem For every d ∈ N, there exist graphs G and H such that

�G and H are homomorphism indistinguishable over trees of degree ≤ d and

�G and H are not homomorphism indistinguishable over all trees.

In particular, it is not possible to simulate the 1-dimensional Weisfeiler–Leman al-
gorithm (Colour Refinement) by counting homomorphisms from trees of bounded de-
gree.

Specht–Wiegmann Theorem
We use representation theory to derive novel matrix equations characterising homo-
morphism indistinguishability. The recipe is the following:

1. Definition of an involution monoid, for example the path monoid

P = { 1,2
, 1 2 , 1 2 , 1 2 , . . . }.

2. For a graph G, define a representation P → CV (G)×V (G) mapping P to its homo-
morphism tensor PG.

3. The sum-of-entries of this representation counts the homomorphisms of interests. It
can be interpreted as a character of a certain subrepresentation. The desired matrix
equation arises from the following theorem:

Theorem Let φ : Γ → CV×V and ψ : Γ → CW×W be finite-dimensional representa-
tions of an involution monoid Γ. Then the following are equivalent:

1. For all g ∈ Γ, soeψ(g) = soeφ(g).

2. There exists a pseudo-stochastic X ∈ CW×V such that Xφ(g) = ψ(g)X .

Graphs of Bounded Pathwidth
Extending the known characterisation of homomorphism indistinguishability over
graphs of treewidth ≤ k in terms of the existence of a non-negative solution to the
Sherali–Adams-style relaxation Lk+1iso (G,H) of the ILP for graph isomorphism, we prove
the following:

Theorem Let k ∈ N. Graphs G and H are homomorphism indistinguishable over
graphs of pathwidth ≤ k if and only if Lk+1iso (G,H) has a rational solution.

Graphs of Bounded Treedepth
Our techniques yield a novel system of equations characterising homomorphism indis-
tinguishable over graphs of bounded treedepth.

Theorem Let k ∈ N. Graphs G and H are homomorphism indistinguishable over
graphs of treedepth ≤ k if and only if the system of equations stated below has a
rational solution.∑

v′∈V (G)

X(ww,vv′) = X(w,v) for all w ∈ V (H) and v ∈ V (G)ℓ,
w ∈ V (H)ℓ where 0 ≤ ℓ < k.∑

w′∈V (H)

X(ww′,vv) = X(w,v) for all v ∈ V (G) and v ∈ V (G)ℓ,
w ∈ V (H)ℓ where 0 ≤ ℓ < k.

X(w,v) = 0 if not vi = vi+1 ⇐⇒ wi = wi+1

for all i < k.
X((), ()) = 1 for the empty tuple ().
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