

Motivation

Lovász (1967) proved that graphs G and H are isomorphic if and only if they are homomorphism indistinguishable over all graphs F the number of homomorphisms $F \rightarrow G$ equals the number of homomorphisms $F \rightarrow H$

Homomorphism indistinguishability over restricted graph classes gives rise to a wide range of equivalence relations which can be characterised in terms of systems of equations. For example, graphs G and H are homomorphism indistinguishable ove cycles/trees/path if and only if the system $X \boldsymbol{A}_{G}=\boldsymbol{A}_{H} X$ has an invertible/doubly cycles/trees/path if and only ic the system $X \boldsymbol{A}_{G}=\boldsymbol{A}_{H} X$ has an invertible/doubly
stochastic/pseudo-stochastic solution $X \in \mathbb{C}^{V(H) \times V(G)}$. We set out to provide uniform explanation for such results.

Labelled Graphs and Homomorphism Tensors

A labelled graph \boldsymbol{F} is a tuple of a graph F and a vertex $u \in V(F)$. Given a graph G the homomorphism tensor of \boldsymbol{F} is $\boldsymbol{F}_{G} \in \mathbb{C}^{V(G)}$ where
$\boldsymbol{F}_{G}(v):=$ number of homomorphisms $h: F \rightarrow G$ such that $h(u)=v$
for all $v \in V(G)$. This can be extended to bilabelled graphs $\boldsymbol{F}=\left(F, u_{1}, u_{2}\right)$ which carry an in-label $u_{1} \in V(F)$ and an out-label $u_{2} \in V(F)$. Their homomorphism tensors \boldsymbol{F}_{G} represent matrices in $\mathbb{C}^{V(G) \times V(G)}$.

Example For every graph G, the homomorphism tensor \boldsymbol{A}_{G} of the bilabelled graph $\boldsymbol{A}={ }^{\frac{1}{0}-2}$ is the adjacency matrix of G

Operations

Combinatorial operations on (bi)labelled graphs correspond to algebraic operations on homomorphism tensors.

- The sum-of-entries soe \boldsymbol{F}_{G} equals hom (F, G), the homomorphism count of the underlying unlabelled graph F of \boldsymbol{F}
- The matrix product $\boldsymbol{F}_{G} \cdot \boldsymbol{F}_{G}^{\prime}$ equals the homomorphism matrix of the bilabelled graph obtained from \boldsymbol{F} and \boldsymbol{F}^{\prime} by series composition
- The Schur product $\boldsymbol{F}_{G} \odot \boldsymbol{F}_{G}^{\prime}$ equals the homomorphism vector of the labelled graph obtained from \boldsymbol{F} and \boldsymbol{F}^{\prime} by gluing.
 Its homomorphism matrix is $\boldsymbol{A}_{G}^{2}=\boldsymbol{A}_{G} \cdot \boldsymbol{A}_{G}$

Homomorphism Tensors and Linear Equations

Martin Grohe, Gaurav Rattan, and Tim Seppelt RWTH Aachen University

Inner-Product Compatible Graph Classes

Using linear algebra, we obtain matrix equations for homomorphism indistinguishability over classes of labelled graphs \mathcal{R} which are

- inner-product compatible, i.e. for all $\boldsymbol{R}, \boldsymbol{S} \in \mathcal{R}$ the homomorphism counts from the graph obtained by gluing R and S and forgetting labels, are equal to the homomorphism counts from some graph in \mathcal{R}, and
- \boldsymbol{A}-invariant, i.e. for every labelled graph $\boldsymbol{R}=(R, u) \in \mathcal{R}$, the labelled graph $\boldsymbol{A} \cdot \boldsymbol{R}$ obtained by adding a fresh vertex u^{\prime} to R, adding the edge $u u^{\prime}$, and placing the label on u^{\prime}, is also in \mathcal{R}

Example The family of labelled paths with labels at end vertices is inner-product compatible. For example,

$$
\operatorname{soe}\left(\frac{1}{\bullet} \odot \odot^{1} \bullet \bullet\right)=\operatorname{soe}\left(\bullet \frac{1}{\bullet} \bullet\right)=\bullet \bullet \bullet=\operatorname{soe}\left(\frac{1}{\bullet} \bullet \bullet\right)
$$

IPC-Theorem Let \mathcal{R} be an inner-product compatible and \boldsymbol{A}-invariant family of labelled graphs containing ${ }^{1}$. Then for graphs G and H the following are equivalent: 1. G and H are homomorphism indistinguishable over \mathcal{R},
2. There exists a pseudo-stochastic $X \in \mathbb{Q}^{V(H) \times V(G)}$ such that $X \boldsymbol{R}_{G}=\boldsymbol{R}_{H}$ for all $R \in \mathcal{R}$.

FIN

Trees and Paths

We apply our theorem to the classes of trees and paths and prove known characterisation of homomorphism indistinguishable over these classes in a uniform manner. In particular, we find a combinatorial explanation for the obscurity that these character isations differ only in the constraint $X \geq 0$.

Trees of Bounded Degree

Characterising homomorphism indistinguishability over graph classes of bounded degree is a notoriously difficult problem. For trees of bounded degree, we prove the following

Theorem For every $d \in \mathbb{N}$, there exist graphs G and H such that

- G and H are homomorphism indistinguishable over trees of degree $\leq d$ and
- G and H are not homomorphism indistinguishable over all trees.

In particular, it is not possible to simulate the 1-dimensional Weisfeiler-Leman algorithm (Colour Refinement) by counting homomorphisms from trees of bounded de gree.

Specht-Wiegmann Theorem

We use representation theory to derive novel matrix equations characterising homo morphism indistinguishability. The recipe is the following:

1. Definition of an involution monoid, for example the path monoid

$$
\mathcal{P}=\left\{\stackrel{1,2}{0_{0}}, \frac{1}{0}-\frac{2}{0}, \frac{1}{\circ} \cdot \frac{2}{0}, \frac{1}{6} \bullet{ }^{2}, \ldots\right\}
$$

2. For a graph G, define a representation $\mathcal{P} \rightarrow \mathbb{C}^{V(G) \times V(G)}$ mapping \boldsymbol{P} to its homo morphism tensor \boldsymbol{P}_{G}.
3. The sum-of-entries of this representation counts the homomorphisms of interests. It can be interpreted as a character of a certain subrepresentation. The desired matrix equation arises from the following theorem:
Theorem Let $\varphi: \Gamma \rightarrow \mathbb{C}^{V \times V}$ and $\psi: \Gamma \rightarrow \mathbb{C}^{W \times W}$ be finite-dimensional representa tions of an involution monoid Γ. Then the following are equivalent
4. For all $g \in \Gamma$, soe $\psi(g)=\operatorname{soe} \varphi(g)$.
5. There exists a pseudo-stochastic $X \in \mathbb{C}^{W \times V}$ such that $X \varphi(g)=\psi(g) X$.

Graphs of Bounded Pathwidth

Extending the known characterisation of homomorphism indistinguishability ove graphs of treewidth $\leq k$ in terms of the existence of a non-negative solution to the Sherali-Adams-style relaxation $\mathrm{L}_{\text {iso }}^{k+1}(G, H)$ of the ILP for graph isomorphism, we prove the following:
Theorem Let $k \in \mathbb{N}$. Graphs G and H are homomorphism indistinguishable over graphs of pathwidth $\leq k$ if and only if $\mathrm{L}_{\text {iso }}^{k+1}(G, H)$ has a rational solution

Graphs of Bounded Treedepth

Our techniques yield a novel system of equations characterising homomorphism indistinguishable over graphs of bounded treedepth.

Theorem Let $k \in \mathbb{N}$. Graphs G and H are homomorphism indistinguishable ove graphs of treedepth $\leq k$ if and only if the system of equations stated below has a rational solution.

$$
\begin{aligned}
\sum_{v^{\prime} \in V(G)} X\left(\boldsymbol{w} w, \boldsymbol{v} v^{\prime}\right)=X(\boldsymbol{w}, \boldsymbol{v}) & \begin{array}{l}
\text { for all } w \in V(H) \text { and } \boldsymbol{v} \in V(G)^{\ell} \\
\boldsymbol{w} \in V(H)^{\ell} \text { where } 0 \leq \ell<k .
\end{array} \\
\sum_{w^{\prime} \in V(H)} X\left(\boldsymbol{w} w^{\prime}, \boldsymbol{v} v\right)=X(\boldsymbol{w}, \boldsymbol{v}) & \begin{array}{l}
\text { for all } v \in V(G) \text { and } \boldsymbol{v} \in V(G)^{\ell} \\
\boldsymbol{w} \in V(H)^{\ell} \text { where } 0 \leq \ell<k .
\end{array} \\
X(\boldsymbol{w}, \boldsymbol{v})=0 & \begin{array}{l}
\text { if not } \boldsymbol{v}_{i}=\boldsymbol{v}_{i+1} \Longleftrightarrow \boldsymbol{w}_{i}=\boldsymbol{w}_{i+1} \\
\text { for all } i<k .
\end{array} \\
X((),())=1 & \begin{array}{l}
\text { for the empty tuple (). }
\end{array}
\end{aligned}
$$

References

[1] M. Grohe, G. Rattan and T. Seppelt. 'Homomorphism Tensors and Linear Equations'. In: 49th International Colloquium on Automata, Languages, and Programming, ICALP 2022, July 4-8, 2022 Paris, France. Ed. by M. Bojańczyk, E. Merelli and D.P. Woocs. Vol. 229. LIPlcs. Schloss Dagstuh Leibniz-Zentrum für Informatik, 2022. doi: 10.4230/LIPIcs. ICALP. 2022. 26

