

Motivation: Numerical Graph Invariants

Figure: Homomorphism Embeddings
Figure from Grohe (2020)

Warming Up: Homomorphism Indistinguishability

Warming Up: Homomorphism Indistinguishability

Warming Up: Homomorphism Indistinguishability

Warming Up: Homomorphism Indistinguishability

Warming Up: Homomorphism Indistinguishability

Warming Up: Homomorphism Indistinguishability

Warming Up: Homomorphism Indistinguishability

24

Warming Up: Homomorphism Indistinguishability

24
24

Warming Up: Homomorphism Indistinguishability

24

The graphs and are homomorphism indistinguishable over $\{0,0,0$.

Motivation: Lovász

Homomorphism
Indistinguishability

All Graphs Lovász (1967) \longleftrightarrow Isomorphism

Motivation: Lovász

Homomorphism
Indistinguishability

All Graphs Lovász (1967) $\longleftrightarrow \quad X$ permutation matrix
Matrix Equations X s.t. $X \boldsymbol{A}_{G}=\boldsymbol{A}_{H} X$

Objective

Objective

Homomorphism

Indistinguishability

Matrix Equations
X s.t. $X \boldsymbol{A}_{G}=\boldsymbol{A}_{H} X$

Objective

Homomorphism
 Indistinguishability

Matrix Equations

$$
X \text { s.t. } X \boldsymbol{A}_{G}=\boldsymbol{A}_{H} X
$$

Trees

X doubly-stochastic
$X \geq 0, X 1=1=X^{T} 1$

Objective

Homomorphism
 Indistinguishability

$$
\begin{aligned}
& \text { Matrix Equations } \\
& X \text { s.t. } X \boldsymbol{A}_{G}=\boldsymbol{A}_{H} X
\end{aligned}
$$

Trees	Dvořák (2010)	X doubly-stochastic
	Dell et al. (2018)	$X \geq 0, X \mathbf{1}=1=X^{T}$
	Dell et al. (2018)	X pseudo-stochastic
Paths		$X 1=1=X^{T} 1$

Objective

Homomorphism
 Indistinguishability

	Dvorák (2010)	X doubly-stochastic
Trees	Dell et al. (2018)	$X \geq 0, X \mathbf{1}=\mathbf{1}=X^{T} \mathbf{1}$
Paths	Dell et al. (2018)	X pseudo-stochastic
Cycles	Folklore	X orthogonal

Objective

Homomorphism
 Indistinguishability

> Matrix Equations
> X s.t. $X \boldsymbol{A}_{G}=\boldsymbol{A}_{H} X$

Trees	Instance-Specific Machinery	X doubly-stochastic $X \geq 0, X \mathbf{1}=\mathbf{1}=X^{T} 1$
Paths	Instance-Specific Machinery	X pseudo-stochastic $X 1=1=X^{T} 1$
Cycles	Instance-Specific Machinery	X orthogonal

Objective

Labelled Graphs and Homomorphism Tensors

Labelled Graphs and Homomorphism Tensors

Labelled Graphs and Homomorphism Tensors

Labelled Graphs and Homomorphism Tensors

Labelled Graphs and Homomorphism Tensors

Labelled Graphs and Homomorphism Tensors

Labelled Graphs and Homomorphism Tensors

Labelled Graphs and Homomorphism Tensors

Labelled Graphs and Homomorphism Tensors

Labelled Graphs and Homomorphism Tensors

$$
\mathcal{F} \longrightarrow \mathbb{C}^{V(G)}
$$

Combinatorial and Algebraic Operations: Unlabelling and Sum-of-Entries

Combinatorial and Algebraic Operations: Unlabelling and Sum-of-Entries

unlabel I

Combinatorial and Algebraic Operations: Unlabelling and Sum-of-Entries

unlabel I

\mapsto
24

Combinatorial and Algebraic Operations: Unlabelling and Sum-of-Entries

unlabel I
\downarrow soe

\mapsto
24

Combinatorial and Algebraic Operations: Gluing and Schur Product

gluing

\odot

$=$

Combinatorial and Algebraic Operations: Gluing and Schur Product

I

gluing
\odot

$=$
\downarrow
I

Combinatorial and Algebraic Operations: Gluing and Schur Product

gluing
\odot

$$
=
$$

I

Homomorphism Tensors of Labelled and Bilabelled Graphs

Examples

- hom $(\square, G)=\mathbf{1}_{G} \in \mathbb{C}^{V(G)}$, the all-ones vector.

Homomorphism Tensors of Labelled and Bilabelled Graphs

Examples

- hom $(\square, G)=\mathbf{1}_{G} \in \mathbb{C}^{V(G)}$, the all-ones vector.
- hom $(\square-G)=\boldsymbol{A}_{G} \in \mathbb{C}^{V(G) \times V(G)}$, the adjacency matrix of G.

Homomorphism Tensors of Labelled and Bilabelled Graphs

Examples

- hom $(\square, G)=\mathbf{1}_{G} \in \mathbb{C}^{V(G)}$, the all-ones vector.
- hom $(\square \star, G)=\boldsymbol{A}_{G} \in \mathbb{C}^{V(G) \times V(G)}$, the adjacency matrix of G.

Remark

Homomorphism tensors resemble logical formulas: $\boldsymbol{A}_{G}\left(v_{1}, v_{2}\right)=1 \Longleftrightarrow G \models E\left(v_{1}, v_{2}\right)$.

First Theorem

Theorem

Let \mathcal{R} be a set of labelled graphs.

1. G and H are homomorphism indistinguishable over \mathcal{R},
2. There exists a pseudo-stochastic X such that $X \boldsymbol{A}_{G}=\boldsymbol{A}_{H} X$ and $X \boldsymbol{R}_{G}=\boldsymbol{R}_{H}$ for all $\boldsymbol{R} \in \mathcal{R}$.

First Theorem

Theorem

Let \mathcal{R} be a set of labelled graphs that is inner-product compatible, \boldsymbol{A}-invariant, and contains \square.

1. G and H are homomorphism indistinguishable over \mathcal{R},
2. There exists a pseudo-stochastic X such that $X \boldsymbol{A}_{G}=\boldsymbol{A}_{H} X$ and $X \boldsymbol{R}_{G}=\boldsymbol{R}_{H}$ for all $\boldsymbol{R} \in \mathcal{R}$.

First Theorem

Theorem

Let \mathcal{R} be a set of labelled graphs that is inner-product compatible, \boldsymbol{A}-invariant, and contains \square.

1. G and H are homomorphism indistinguishable over \mathcal{R},
2. There exists a pseudo-stochastic X such that $X \boldsymbol{A}_{G}=\boldsymbol{A}_{H} X$ and $X \boldsymbol{R}_{G}=\boldsymbol{R}_{H}$ for all $\boldsymbol{R} \in \mathcal{R}$.

Definition (Inner-product compatible)

For all $\boldsymbol{R}, \boldsymbol{S} \in \mathcal{R}$ there exists $\boldsymbol{T} \in \mathcal{R}$ such that $\langle\boldsymbol{R}, \boldsymbol{S}\rangle=$ soe \boldsymbol{T}.

First Theorem

Theorem

Let \mathcal{R} be a set of labelled graphs that is inner-product compatible, A-invariant, and contains \square.

1. G and H are homomorphism indistinguishable over \mathcal{R},
2. There exists a pseudo-stochastic X such that $X \boldsymbol{A}_{G}=\boldsymbol{A}_{H} X$ and $X \boldsymbol{R}_{G}=\boldsymbol{R}_{H}$ for all $\boldsymbol{R} \in \mathcal{R}$.

Definition (\boldsymbol{A}-invariant)

For all $\boldsymbol{R} \in \mathcal{R}$ also $\boldsymbol{A} \cdot \boldsymbol{R} \in \mathcal{R}$.

$$
\boldsymbol{A} \cdot \square-\square=\square-\star \cdot \square--\square=\square-0-0
$$

Paths and Trees

The classes of paths and trees are inner-product compatible and \boldsymbol{A}-invariant.

Paths and Trees

The classes of paths and trees are inner-product compatible and \boldsymbol{A}-invariant.

Homomorphism
Indistinguishability
\leftarrow First Theorem \rightarrow
Matrix Equations X s.t. $X \boldsymbol{A}_{G}=\boldsymbol{A}_{H} X$

Paths and Trees

The classes of paths and trees are inner-product compatible and \boldsymbol{A}-invariant.

Homomorphism Indistinguishability

Paths

Trees

Paths and Trees

The classes of paths and trees are inner-product compatible and \boldsymbol{A}-invariant.

Paths and Trees

The classes of paths and trees are inner-product compatible and \boldsymbol{A}-invariant.

Bounded Degree Trees

Are bounded degree tree homomorphism counts as expressive as tree homomorphism counts?

Bounded Degree Trees

Are bounded degree tree homomorphism counts as expressive as tree homomorphism counts? No! Theorem
For every $d \geq 1$, there exist graphs G and H such that

1. G and H are homomorphism indistinguishable over \boldsymbol{d}-ary trees, and
2. G and H are not homomorphism indistinguishable over all trees.

Bounded Degree Trees

Are bounded degree tree homomorphism counts as expressive as tree homomorphism counts? No!

Theorem

For every $d \geq 1$, there exist graphs G and H such that

1. G and H are homomorphism indistinguishable over \boldsymbol{d}-ary trees, and
2. G and H are not homomorphism indistinguishable over all trees.

Corollary

It is not possible to simulate 1-WL (Colour Refinement) by counting homomorphisms from bounded degree trees.

Combinatorial and Algebraic Operations: Glueing/Unlabelling and Trace

Combinatorial and Algebraic Operations: Glueing/Unlabelling and Trace

glue and unlabel

Combinatorial and Algebraic Operations: Glueing/Unlabelling and Trace

$\rightarrow \quad \mapsto \quad$| 12 | 0 | 4 | 0 | 4 | 0 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 6 | 0 | 5 | 0 | 5 | 0 |
| 4 | 0 | 2 | 0 | 1 | 0 | 1 |
| 0 | 5 | 0 | 6 | 0 | 5 | 0 |
| 4 | 0 | 1 | 0 | 2 | 0 | 1 |
| 0 | 5 | 0 | 5 | 0 | 6 | 0 |
| 4 | 0 | 1 | 0 | 1 | 0 | 2 |

glue and unlabel

Combinatorial and Algebraic Operations: Glueing/Unlabelling and Trace

$\mapsto \quad$| 12 | 0 | 4 | 0 | 4 | 0 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 6 | 0 | 5 | 0 | 5 | 0 |
| 4 | 0 | 2 | 0 | 1 | 0 | 1 |
| 0 | 5 | 0 | 6 | 0 | 5 | 0 |
| 4 | 0 | 1 | 0 | 2 | 0 | 1 |
| 0 | 5 | 0 | 5 | 0 | 6 | 0 |
| 4 | 0 | 1 | 0 | 1 | 0 | 2 |

$\underset{\text { unlabel }}{\text { glue and }} I$

Combinatorial and Algebraic Operations: Glueing/Unlabelling and Trace

$\square \quad \mapsto \quad$| 12 | 0 | 4 | 0 | 4 | 0 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 6 | 0 | 5 | 0 | 5 | 0 |
| 4 | 0 | 2 | 0 | 1 | 0 | 1 |
| 0 | 5 | 0 | 6 | 0 | 5 | 0 |
| 4 | 0 | 1 | 0 | 2 | 0 | 1 |
| 0 | 5 | 0 | 5 | 0 | 6 | 0 |
| 4 | 0 | 1 | 0 | 1 | 0 | 2 |

36

Crash Course on Representation Theory

- Let Γ be something like a group
- A representation of Γ is a homomorphism $\varphi: \Gamma \rightarrow \mathbb{C}^{n \times n}$

Crash Course on Representation Theory

- Let Γ be something like a group
- A representation of Γ is a homomorphism $\varphi: \Gamma \rightarrow \mathbb{C}^{n \times n}$
- The character of φ is the map $g \mapsto \operatorname{tr} \varphi(g)$

Crash Course on Representation Theory

- Let Γ be something like a group
- A representation of Γ is a homomorphism $\varphi: \Gamma \rightarrow \mathbb{C}^{n \times n}$
- The character of φ is the map $g \mapsto \operatorname{tr} \varphi(g)$

$\longrightarrow X$ invertible s.t. $X \varphi=\psi X$

Crash Course on Representation Theory

- Let Γ be something like a group

- A representation of Γ is a homomorphism $\varphi: \Gamma \rightarrow \mathbb{C}^{n \times n}$
- The character of φ is the map $g \mapsto \operatorname{tr} \varphi(g)$

$\longrightarrow X$ invertible s.t. $X \varphi=\psi X$

Crash Course on Representation Theory

- Let Γ be something like a group

- A representation of Γ is a homomorphism $\varphi: \Gamma \rightarrow \mathbb{C}^{n \times n}$
- homomorphism tensors $\boldsymbol{P} \mapsto \boldsymbol{P}_{G}$
- The character of φ is the map $g \mapsto \operatorname{tr} \varphi(g)$

Characters of φ and ψ are the same.

Frobenius and Schur (1906)
$\longrightarrow X$ invertible s.t. $X \varphi=\psi X$

Crash Course on Representation Theory

- Let Γ be something like a group

- A representation of Γ is a homomorphism $\varphi: \Gamma \rightarrow \mathbb{C}^{n \times n}$
- homomorphism tensors $\boldsymbol{P} \mapsto \boldsymbol{P}_{G}$
- The character of φ is the map $g \mapsto \operatorname{tr} \varphi(g)$
- character tabulates cycle homomorphism counts

Characters of φ and ψ are the same.

Frobenius and Schur (1906)
$\longrightarrow X$ invertible s.t. $X \varphi=\psi X$

Crash Course on Representation Theory

- Let Γ be something like a group

- A representation of Γ is a homomorphism $\varphi: \Gamma \rightarrow \mathbb{C}^{n \times n}$
- homomorphism tensors $\boldsymbol{P} \mapsto \boldsymbol{P}_{G}$
- The character of φ is the map $g \mapsto \operatorname{tr} \varphi(g)$
- character tabulates cycle homomorphism counts

Characters of φ and ψ are the same.

Frobenius and
Schur (1906)
$\longrightarrow X$ invertible s.t. $X \varphi=\psi X$

X invertible s.t. $X \boldsymbol{A}_{G}=\boldsymbol{A}_{H} X$

Second Theorem: Paths (again)

Path homomorphism counts are tabulated by soe of the representation.

Second Theorem: Paths (again)

Path homomorphism counts are tabulated by soe of the representation.

Sum-of-Entries of φ and ψ are the same.
X pseudo-stochastic s.t. $X \varphi=\psi X$

Second Theorem: Paths (again)

Path homomorphism counts are tabulated by soe of the representation.

Sum-of-Entries of φ and ψ are the same.

Second Theorem \longrightarrow

Graphs of Bounded Pathwidth and Sherali-Adams Relaxation

Homomorphism

Indistinguishability

Graphs of Bounded Pathwidth and Sherali-Adams Relaxation

Homomorphism

Indistinguishability

Trees

Paths

Atserias and Maneva (2012)
Grohe and Otto (2015)

Matrix Equations

X s.t. $X \boldsymbol{A}_{G}=\boldsymbol{A}_{H} X$
X doubly-stochastic
$X \geq 0, X \mathbf{1}=\mathbf{1}=X^{\top} \mathbf{1}$
X pseudo-stochastic
$X 1=1=X^{T} 1$
$\mathrm{L}_{\text {iso }}^{k+1}(G, H)$ has nonnegative solution

Graphs of Bounded Pathwidth and Sherali-Adams Relaxation

Homomorphism

Indistinguishability

Matrix Equations

X s.t. $X \boldsymbol{A}_{G}=\boldsymbol{A}_{H} X$

Paths

Treewidth $\leq k$

Pathwidth $\leq k$
X doubly-stochastic
$X \geq 0, X \mathbf{1}=1=X^{\top} 1$

\longleftrightarrow| X pseudo-stochastic |
| :---: |
| $X 1=1=X^{T} 1$ |

$\mathrm{L}_{\text {iso }}^{k+1}(G, H)$ has nonnegative solution

$X 1=1=X^{\top} 1$ $\mathrm{L}_{\text {iso }}^{k+1}(G, H)$ has
rational solution

Graphs of Bounded Pathwidth and Sherali-Adams Relaxation

Homomorphism

Indistinguishability

Paths

Atserias and Maneva (2012)
Grohe and Otto (2015)
Treewidth $\leq k$

Pathwidth $\leq k$

Matrix Equations

X s.t. $X \boldsymbol{A}_{G}=\boldsymbol{A}_{H} X$
X doubly-stochastic
$X \geq 0, X \mathbf{1}=\mathbf{1}=X^{\top} \mathbf{1}$
X pseudo-stochastic
$X 1=1=X^{T} 1$
$\mathrm{L}_{\text {iso }}^{k+1}(G, H)$ has nonnegative solution
$\mathrm{L}_{\text {iso }}^{k+1}(G, H)$ has rational solution

Graphs of Bounded Pathwidth and Sherali-Adams Relaxation

Homomorphism
Indistinguishability

Trees $\quad \longleftarrow \quad$| X doubly-stochastic |
| :---: |
| $X \geq 0, X \mathbf{1}=\mathbf{1}=X^{T} \mathbf{1}$ |

Paths

Paths	Unified Algebraic Framework	$\begin{aligned} & X \text { pseudo-stochastic } \\ & X \mathbf{1}=1=X^{\top} 1 \end{aligned}$
Treewidth $\leq k$		$\mathrm{L}_{\text {iso }}^{k+1}(G, H)$ has non negative solution
Pathwidth $\leq k$	\longrightarrow	$\mathrm{L}_{\text {iso }}^{k+1}(G, H)$ has rational solution

Graphs of Bounded Treedepth

Homomorphism
Indistinguishability

Matrix Equations
X s.t. $X \boldsymbol{A}_{G}=\boldsymbol{A}_{H} X$

Novel system of equa-
Treedepth $\leq d$
Grohe, Rattan, S. (2022) tions resembling ordered version of $\mathrm{L}_{\text {iso }}^{k+1}(G, H)$

Graphs of Bounded Treedepth

Homomorphism
Indistinguishability

> Matrix Equations
> X s.t. $X \boldsymbol{A}_{G}=\boldsymbol{A}_{H} X$

$$
\text { Treedepth } \leq d \quad \longleftarrow \quad \begin{gathered}
\text { Unified Algebraic } \\
\text { Framework }
\end{gathered} \longrightarrow \begin{gathered}
\text { Novel system of equa- } \\
\text { tions resembling ordered } \\
\text { version of } L_{\text {iso }}^{k+1}(G, H)
\end{gathered}
$$

Scoring

Homomorphism
Indistinguishability
\qquad Unified Algebraic Framework

Matrix Equations
X s.t. $X \boldsymbol{A}_{G}=\boldsymbol{A}_{H} X$

Scoring

Linear Algebra and Representation Theory, Labelled and Bilabelled graphs			
Homomorphism Indistinguishability	Unified Algebraic Framework		Matrix Equations
:---:			

Scoring

Linear Algebra and Representation Theory, Labelled and Bilabelled graphs	
Indistinguishability	Unified Algebraic Framework
Matrix Equations	

Open Problems

- Extension to other graph classes
- planar graphs, aligning with Mančinska and Roberson (2020)
- relational structures and other graph classes via comonads of Dawar et al. (2021)
- Extension to graph similarity
- metrics induced by homomorphism embeddings $G \mapsto(\operatorname{hom}(F, G) \mid F \in \mathcal{F})$ vs. matrix-based metrics $\min _{X}\left\|X \boldsymbol{A}_{G}-\boldsymbol{A}_{H} X\right\|$
- Böker (2021) for trees

Bibliography I

Atserias, A. and Maneva, E. (2012). Sherali-Adams Relaxations and Indistinguishability in Counting Logics. In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, ITCS '12, pages 367-379, New York, NY, USA. Association for Computing Machinery.
Böker, J. (2021). Graph Similarity and Homomorphism Densities. In Bansal, N., Merelli, E., and Worrell, J., editors, 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages 32:1-32:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.
Dawar, A., Jakl, T., and Reggio, L. (2021). Lovász-type theorems and game comonads. In 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1-13. IEEE.
Dell, H., Grohe, M., and Rattan, G. (2018). Lovász Meets Weisfeiler and Leman. In Chatzigiannakis, I., Kaklamanis, C., Marx, D., and Sannella, D., editors, 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, volume 107 of LIPIcs, pages 40:1-40:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.
Dvořák, Z. (2010). On recognizing graphs by numbers of homomorphisms. Journal of Graph Theory, 64(4):330-342.

Bibliography II

Frobenius, G. and Schur, I. (1906). Über die Äquivalenz der Gruppen linearer Substitutionen. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin, 1:209-217.
Grohe, M. (2020). word2vec, node2vec, graph2vec, x2vec: Towards a theory of vector embeddings of structured data. In Suciu, D., Tao, Y., and Wei, Z., editors, Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2020, Portland, OR, USA, June 14-19, 2020, pages 1-16. ACM.
Grohe, M. and Otto, M. (2015). Pebble Games and Linear Equations. J. Symb. Log., 80(3):797-844.
Lovász, L. (1967). Operations with structures. Acta Mathematica Academiae Scientiarum Hungarica, 18(3):321-328.
Mančinska, L. and Roberson, D. E. (2020). Quantum isomorphism is equivalent to equality of homomorphism counts from planar graphs. In 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 661-672. IEEE.
Title picture: "Bicycle race scene. A peloton of six cyclists crosses the finish line in front of a crowded grandstand, observed by a referee." (1895) by Calvert Lithographic Co., Detroit, Michigan, Public Domain, via Wikimedia Commons.
https://commons.wikimedia.org/wiki/File:Bicycle_race_scene,_1895.jpg

