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Motivation: Numerical Graph Invariants

Figure: Homomorphism Embeddings
Figure from Grohe (2020)

3 / 27



Warming Up: Homomorphism Indistinguishability

24

36

24

36

The graphs and are homomorphism indistinguishable over
{

,
}

.

4 / 27



Warming Up: Homomorphism Indistinguishability

24

36

24

36

The graphs and are homomorphism indistinguishable over
{

,
}

.

4 / 27



Warming Up: Homomorphism Indistinguishability

24

36

24

36

The graphs and are homomorphism indistinguishable over
{

,
}

.

4 / 27



Warming Up: Homomorphism Indistinguishability

24

36

24

36

The graphs and are homomorphism indistinguishable over
{

,
}

.

4 / 27



Warming Up: Homomorphism Indistinguishability

24

36

24

36

The graphs and are homomorphism indistinguishable over
{

,
}

.

4 / 27



Warming Up: Homomorphism Indistinguishability

24

36

24

36

The graphs and are homomorphism indistinguishable over
{

,
}

.

4 / 27



Warming Up: Homomorphism Indistinguishability

24

36

24

36

The graphs and are homomorphism indistinguishable over
{

,
}

.

4 / 27



Warming Up: Homomorphism Indistinguishability

24

36

24

36

The graphs and are homomorphism indistinguishable over
{

,
}

.

4 / 27



Warming Up: Homomorphism Indistinguishability

24

36

24

36

The graphs and are homomorphism indistinguishable over
{

,
}

.

4 / 27



Motivation: Lovász

Homomorphism
Indistinguishability

Matrix Equations
X s.t. XAG = AHX

All Graphs IsomorphismLovász (1967)
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2. Homomor-
phism Tensors



Labelled Graphs and Homomorphism Tensors
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Combinatorial and Algebraic Operations: Unlabelling and Sum-of-Entries
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Homomorphism Tensors of Labelled and Bilabelled Graphs

Examples
▶ hom( ,G) = 1G ∈ CV (G), the all-ones vector.

▶ hom( ,G) = AG ∈ CV (G)×V (G), the adjacency matrix of G .

Remark
Homomorphism tensors resemble logical formulas: AG(v1, v2) = 1 ⇐⇒ G |= E (v1, v2).
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3. Trees

3. Paths



First Theorem

Theorem
Let R be a set of labelled graphs.

1. G and H are homomorphism indistinguishable over R,
2. There exists a pseudo-stochastic X such that XAG = AHX and XRG = RH for all R ∈ R.

Definition (Inner-product compatible)
For all R,S ∈ R there exists T ∈ R such that ⟨R,S⟩ = soe T .

⟨ , ⟩ = soe ( ⊙ ) = = soe

13 / 27



First Theorem

Theorem
Let R be a set of labelled graphs that is inner-product compatible, A-invariant, and contains .

1. G and H are homomorphism indistinguishable over R,
2. There exists a pseudo-stochastic X such that XAG = AHX and XRG = RH for all R ∈ R.

Definition (Inner-product compatible)
For all R,S ∈ R there exists T ∈ R such that ⟨R,S⟩ = soe T .

⟨ , ⟩ = soe ( ⊙ ) = = soe

13 / 27



First Theorem

Theorem
Let R be a set of labelled graphs that is inner-product compatible, A-invariant, and contains .

1. G and H are homomorphism indistinguishable over R,
2. There exists a pseudo-stochastic X such that XAG = AHX and XRG = RH for all R ∈ R.

Definition (Inner-product compatible)
For all R,S ∈ R there exists T ∈ R such that ⟨R,S⟩ = soe T .

⟨ , ⟩ = soe ( ⊙ ) = = soe

13 / 27



First Theorem

Theorem
Let R be a set of labelled graphs that is inner-product compatible, A-invariant, and contains .

1. G and H are homomorphism indistinguishable over R,
2. There exists a pseudo-stochastic X such that XAG = AHX and XRG = RH for all R ∈ R.

Definition (A-invariant)
For all R ∈ R also A · R ∈ R.

A · = · =
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Paths and Trees

The classes of paths and trees are inner-product compatible and A-invariant.

Homomorphism
Indistinguishability

Matrix Equations
X s.t. XAG = AHXFirst Theorem

Paths Trees
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Paths and Trees

The classes of paths and trees are inner-product compatible and A-invariant.

Homomorphism
Indistinguishability

Matrix Equations
X s.t. XAG = AHX

First Theorem
∀R ∈ R. XRG = RH

Paths
vacuous

Trees
X ≥ 0
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Bounded Degree Trees

Are bounded degree tree homomorphism counts as expressive as tree homomorphism counts?

No!

Theorem
For every d ≥ 1, there exist graphs G and H such that

1. G and H are homomorphism indistinguishable over d-ary trees, and
2. G and H are not homomorphism indistinguishable over all trees.

Corollary
It is not possible to simulate 1-WL (Colour Refinement) by counting homomorphisms from
bounded degree trees.
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4. Cycles
and Paths



Combinatorial and Algebraic Operations: Glueing/Unlabelling and Trace
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Crash Course on Representation Theory

▶ Let Γ be something like a group

▶ path monoid P =
{

, , , , . . .
}

▶ A representation of Γ is a homomorphism φ : Γ → Cn×n

▶ homomorphism tensors P 7→ PG

▶ The character of φ is the map g 7→ trφ(g)

▶ character tabulates cycle homomorphism counts

Characters of φ
and ψ are the same. X invertible s.t. Xφ = ψXFrobenius and

Schur (1906)

Cycles X invertible s.t. XAG = AHX
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Second Theorem: Paths (again)

Path homomorphism counts are tabulated by soe of the representation.
soe7→

Sum-of-Entries of φ
and ψ are the same.

X pseudo-stochastic
s.t. Xφ = ψXSecond Theorem

Paths
X pseudo-stochastic
s.t. XAG = AHX
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Graphs of Bounded Pathwidth and Sherali–Adams Relaxation
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Treewidth ≤ k Lk+1
iso (G ,H) has non-
negative solution

Atserias and Maneva (2012)
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Pathwidth ≤ k Lk+1
iso (G ,H) has

rational solution
Dell et al. (2018)

Unified Algebraic
Framework
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Graphs of Bounded Treedepth
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5. Final Spurt
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Open Problems

▶ Extension to other graph classes
▶ planar graphs, aligning with Mančinska and Roberson (2020)
▶ relational structures and other graph classes via comonads of Dawar et al. (2021)

▶ Extension to graph similarity
▶ metrics induced by homomorphism embeddings G 7→ (hom(F ,G) | F ∈ F) vs.

matrix-based metrics minX ∥XAG − AHX∥
▶ Böker (2021) for trees

24 / 27



Thank you for your attention!
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