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What power does it need to distinguish graphs?

Combinatorial
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Machine Learning
Architectures
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Weisfeiler–Leman Algorithm

I 1-WL iteratively colours vertices by the
colours of their neighbouring vertices.

I if two graphs are coloured the same,
they are 1-WL indistinguishable.

I k-WL is generalisation to k-tuples of
vertices,

I runs in O(nk+1 log n).

1-WL

2-WL

3-WL

...
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Spectral Graph Properties
0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 1 0 0
0 0 1 0 1 1
0 0 0 1 0 1
0 0 0 1 1 0


Adjacency Matrix


2 −1 −1 0 0 0

−1 2 −1 0 0 0
−1 −1 3 −1 0 0
0 0 −1 3 −1 −1
0 0 0 −1 2 −1
0 0 0 −1 −1 2


Laplacian Matrix

Derived Spectral
Properties

Spectral
PropertiesGraph MatricesGraphs

5 / 15



Spectral Graph Properties
0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 1 0 0
0 0 1 0 1 1
0 0 0 1 0 1
0 0 0 1 1 0


Adjacency Matrix


2 −1 −1 0 0 0

−1 2 −1 0 0 0
−1 −1 3 −1 0 0
0 0 −1 3 −1 −1
0 0 0 −1 2 −1
0 0 0 −1 −1 2


Laplacian Matrix

Derived Spectral
Properties

Spectral
PropertiesGraph MatricesGraphs

5 / 15



Spectral Graph Properties
0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 1 0 0
0 0 1 0 1 1
0 0 0 1 0 1
0 0 0 1 1 0


Adjacency Matrix


2 −1 −1 0 0 0

−1 2 −1 0 0 0
−1 −1 3 −1 0 0
0 0 −1 3 −1 −1
0 0 0 −1 2 −1
0 0 0 −1 −1 2


Laplacian Matrix

Derived Spectral
Properties

Spectral
PropertiesGraph MatricesGraphs

5 / 15



Spectral Graph Properties
0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 1 0 0
0 0 1 0 1 1
0 0 0 1 0 1
0 0 0 1 1 0


Adjacency Matrix


2 −1 −1 0 0 0

−1 2 −1 0 0 0
−1 −1 3 −1 0 0
0 0 −1 3 −1 −1
0 0 0 −1 2 −1
0 0 0 −1 −1 2


Laplacian Matrix

±
√

3, 1 ±
√

2, . . .
Eigenvalues


0
1

−1
1
0

−1

 , . . .

Eigenvectors

Derived Spectral
Properties

Spectral
PropertiesGraph MatricesGraphs

5 / 15



Spectral Graph Properties
0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 1 0 0
0 0 1 0 1 1
0 0 0 1 0 1
0 0 0 1 1 0


Adjacency Matrix


2 −1 −1 0 0 0

−1 2 −1 0 0 0
−1 −1 3 −1 0 0
0 0 −1 3 −1 −1
0 0 0 −1 2 −1
0 0 0 −1 −1 2


Laplacian Matrix

±
√

3, 1 ±
√

2, . . .
Eigenvalues


0
1

−1
1
0

−1

 , . . .

Eigenvectors

14

Commute Distances

Derived Spectral
Properties

Spectral
PropertiesGraph MatricesGraphs

5 / 15



Outline

Central Questions: How does the power of combinatorial invariants (k-WL) and
spectral invariants to distinguish graphs compare?

Spectra between 1-WL and 2-WL

Spectra beyond 2-WL
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Stronger Spectral Invariants

1-WL

2-WL

Definition (Fürer’s spectral invariant)
Φ(G) := (Spec A(G), {{Pv | v ∈ V (G)}})
where Pv := (pvv , {{pvw | w ∈ V (G)}})
aggregates entries of projections onto
eigenspace pvw :=

(
P(1)

vw , . . . , P(k)
vw

)
.

Question (Fürer (2010))
Is Φ as strong as 2-WL?

No!

Theorem
If G and H are (1, 1)-WL indistinguishable
then Φ(G) = Φ(H).

Hence, Φ is strictly weaker than 2-WL.
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(1, 1)-WL

Comparing vertex-individualised copies using 1-WL.

Two graphs G and H are (1, 1)-WL indistinguishable if there is a bijection
π : V (G) → V (H) such that the vertex-individualised copies Gv and Hπ(v) are 1-WL
indistinguishable for all v ∈ V (G).
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(1, 1)-WL

I strictly between 1-WL and 2-WL w.r.t.
distinguishing power

I linear space complexity outperforming 2-WL’s
quadratic space complexity

I (1, 1)-WL indistinguishable graphs

I have cospectral adjacency, Laplacian, etc.
matrices, agree in Fürer’s spectral invariant
answers question of Fürer (2010) negatively

I same multiset of commute distances,
strengthens a result of Godsil (1981)

I augmenting 1-WL with spectral information
does not allow to supersede (1, 1)-WL

(1, 1)-WL

1-WL

2-WL

Co-
spectral

Φ
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d iterations
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Spectra for k-WL after d iterations

Theorem
For graphs G and H and k ≥ 1, d ≥ 0, the following are equivalent:

1. G and H are not distinguished by k-WL after d iterations,
2. there exists a pseudo-stochastic matrix X such that

XAG = AHX for all A ∈ Ak,d .

In particular, certain parts of the spectra of the graph matrices AG and AH are the same.

d iterations
of k-WL

systems of
equations

spectral
properties

homomorphism
indistinguishability
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Homomorphism Indistinguishability

24

36
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36

The graphs and are homomorphism indistinguishable over
{

,
}
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All graphs Isomorphism Trees 1-WL
X doubly-stochastic
s.t. XAG = AHX

Paths
X pseudo-stochastic
s.t. XAG = AHX

Cycles
cospectrality of

adjacency matrices

Planar Graphs
U quantum per-
mutation matrix

s.t. UAG = AHU

Unified Algebraic Framework
Grohe et al. (2022)

Mančinska and Roberson (2020)

Extension

Graphs with k-pebble
forest cover of depth d
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Conclusion

I we mapped out the relationship
between combinatorial algorithms and
spectral graph properties

I classical spectral graph properties
between 1-WL and 2-WL,

I novel spectral characterisations for
k-WL after d iterations.

I we introduced (1, 1)-WL, a linear space
algorithm, separating 1-WL plus
spectra from 2-WL.

I we contributed algebraic tools for
constructing systems of equations for
homomorphism indistinguishability.

combinatorial
algorithms

machine
learning

architectures

logical
equivalence
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