

What power does it need to distinguish graphs?

What power does it need to distinguish graphs?

Combinatorial Algorithms	Machine Learning Architectures

What power does it need to distinguish graphs?

Combinatorial	
Algorithms	Machine Learning Architectures

Spectral
Properties

Weisfeiler-Leman Algorithm

- 1-WL iteratively colours vertices by the colours of their neighbouring vertices.

Weisfeiler-Leman Algorithm

- 1-WL iteratively colours vertices by the colours of their neighbouring vertices.
- if two graphs are coloured the same, they are 1-WL indistinguishable.

Weisfeiler-Leman Algorithm

- 1-WL iteratively colours vertices by the colours of their neighbouring vertices.
- if two graphs are coloured the same, they are $1-\mathrm{WL}$ indistinguishable.
- k-WL is generalisation to k-tuples of vertices,

Weisfeiler-Leman Algorithm

- 1-WL iteratively colours vertices by the colours of their neighbouring vertices.
- if two graphs are coloured the same, they are $1-\mathrm{WL}$ indistinguishable.
- k-WL is generalisation to k-tuples of vertices,
- runs in $O\left(n^{k+1} \log n\right)$.

Weisfeiler-Leman Algorithm

- 1-WL iteratively colours vertices by the colours of their neighbouring vertices.
- if two graphs are coloured the same, they are 1-WL indistinguishable.
- k-WL is generalisation to k-tuples of vertices,
- runs in $O\left(n^{k+1} \log n\right)$.

Weisfeiler-Leman Algorithm

- 1-WL iteratively colours vertices by the colours of their neighbouring vertices.
- if two graphs are coloured the same, they are 1-WL indistinguishable.
- $k-W L$ is generalisation to k-tuples of vertices,
- runs in $O\left(n^{k+1} \log n\right)$.

Weisfeiler-Leman Algorithm

- 1-WL iteratively colours vertices by the colours of their neighbouring vertices.
- if two graphs are coloured the same, they are 1-WL indistinguishable.
- k-WL is generalisation to k-tuples of vertices,
- runs in $O\left(n^{k+1} \log n\right)$.

What power does it need to distinguish graphs?
Weisfeiler-Leman as a yardstick
$k-W L$

spectral properties

What power does it need to distinguish graphs?
Weisfeiler-Leman as a yardstick

Spectral Graph Properties

Spectral Graph Properties

Graphs

Spectral Graph Properties

Graphs
Graph Matrices

Spectral Graph Properties

Spectral Graph Properties

Outline

Central Questions: How does the power of combinatorial invariants ($k-W L$) and spectral invariants to distinguish graphs compare?

Spectra between 1-WL and 2-WL

Spectra beyond 2-WL

Stronger Spectral Invariants

Stronger Spectral Invariants

Stronger Spectral Invariants

Definition (Fürer's spectral invariant) $\Phi(G):=\left(\operatorname{Spec} A(G),\left\{\left\{P_{v} \mid v \in V(G)\right\}\right)\right.$ where $P_{v}:=\left(p_{v v},\left\{\left\{p_{v w} \mid w \in V(G)\right\}\right)\right.$ aggregates entries of projections onto eigenspace $p_{v w}:=\left(P_{v w}^{(1)}, \ldots, P_{v w}^{(k)}\right)$.

Stronger Spectral Invariants

Definition (Fürer's spectral invariant) $\Phi(G):=\left(\operatorname{Spec} A(G),\left\{\left\{P_{v} \mid v \in V(G)\right\}\right)\right.$ where $P_{v}:=\left(p_{v v},\left\{\left\{p_{v w} \mid w \in V(G)\right\}\right)\right.$ aggregates entries of projections onto eigenspace $p_{v w}:=\left(P_{v w}^{(1)}, \ldots, P_{v w}^{(k)}\right)$.

Question (Fürer (2010))
Is Φ as strong as 2-WL?

Stronger Spectral Invariants

Definition (Fürer's spectral invariant) $\Phi(G):=\left(S \operatorname{pec} A(G),\left\{\left\{P_{v} \mid v \in V(G)\right\}\right)\right.$ where $P_{v}:=\left(p_{v v},\left\{\left\{p_{v w} \mid w \in V(G)\right\}\right)\right.$ aggregates entries of projections onto eigenspace $p_{v w}:=\left(P_{v w}^{(1)}, \ldots, P_{v w}^{(k)}\right)$.

Question (Fürer (2010))
Is Φ as strong as $2-W L$?
Theorem
If \boldsymbol{G} and \boldsymbol{H} are (1,1)-WL indistinguishable then $\Phi(G)=\Phi(H)$.

Stronger Spectral Invariants

Definition (Fürer's spectral invariant) $\Phi(G):=\left(S \operatorname{pec} A(G),\left\{\left\{P_{v} \mid v \in V(G)\right\}\right)\right.$ where $P_{v}:=\left(p_{v v},\left\{\left\{p_{v w} \mid w \in V(G)\right\}\right)\right.$ aggregates entries of projections onto eigenspace $p_{v w}:=\left(P_{v w}^{(1)}, \ldots, P_{v w}^{(k)}\right)$.
Question (Fürer (2010))
Is Φ as strong as 2-WL? No!
Theorem
If \boldsymbol{G} and \boldsymbol{H} are (1,1)-WL indistinguishable then $\Phi(G)=\Phi(H)$.
Hence, Φ is strictly weaker than 2-WL.

(1, 1)-WL

Comparing vertex-individualised copies using $1-W L$.

(1, 1)-WL

Comparing vertex-individualised copies using $1-W L$.

(1, 1)-WL

Comparing vertex-individualised copies using $1-W L$.

(1, 1)-WL

Comparing vertex-individualised copies using $1-W L$.

(1, 1)-WL

Comparing vertex-individualised copies using $1-W L$.

(1, 1)-WL

Comparing vertex-individualised copies using 1-WL.

Two graphs G and H are $(1,1)-W L$ indistinguishable if there is a bijection $\pi: V(G) \rightarrow V(H)$ such that the vertex-individualised copies G_{v} and $H_{\pi(v)}$ are 1-WL indistinguishable for all $v \in V(G)$.

$(1,1)-\mathrm{WL}$

- strictly between 1-WL and 2-WL w.r.t. distinguishing power

$(1,1)-\mathrm{WL}$

- strictly between $1-W L$ and $2-W L$ w.r.t. distinguishing power
- linear space complexity outperforming 2-WL's quadratic space complexity

$(1,1)-\mathrm{WL}$

- strictly between $1-W L$ and $2-W L$ w.r.t. distinguishing power
- linear space complexity outperforming 2-WL's quadratic space complexity
- (1, 1)-WL indistinguishable graphs

$(1,1)-\mathrm{WL}$

- strictly between $1-W L$ and $2-W L$ w.r.t. distinguishing power
- linear space complexity outperforming 2-WL's quadratic space complexity
- (1,1)-WL indistinguishable graphs
- have cospectral adjacency, Laplacian, etc. matrices, agree in Fürer's spectral invariant answers question of Fürer (2010) negatively

$(1,1)-\mathrm{WL}$

- strictly between 1-WL and 2-WL w.r.t. distinguishing power
- linear space complexity outperforming 2-WL's quadratic space complexity
- (1,1)-WL indistinguishable graphs
- have cospectral adjacency, Laplacian, etc. matrices, agree in Fürer's spectral invariant answers question of Fürer (2010) negatively
- same multiset of commute distances, strengthens a result of Godsil (1981)

$(1,1)-\mathrm{WL}$

- strictly between 1-WL and 2-WL w.r.t. distinguishing power
- linear space complexity outperforming 2-WL's quadratic space complexity
- (1,1)-WL indistinguishable graphs
- have cospectral adjacency, Laplacian, etc. matrices, agree in Fürer's spectral invariant answers question of Fürer (2010) negatively
- same multiset of commute distances, strengthens a result of Godsil (1981)
- augmenting 1-WL with spectral information does not allow to supersede $(1,1)-W L$

What power does it need to distinguish graphs?
Weisfeiler-Leman as a yardstick

spectral properties

What power does it need to distinguish graphs?
Weisfeiler-Leman as a yardstick

spectral properties

What power does it need to distinguish graphs?
Weisfeiler-Leman as a yardstick

What power does it need to distinguish graphs?
Weisfeiler-Leman as a yardstick

Spectra for k-WL after d iterations

Spectra for k-WL after d iterations

d iterations
of k-WL
systems of equations
spectral properties

Spectra for $k-W L$ after d iterations

spectral properties

Spectra for k-WL after d iterations

Theorem

For graphs G and H and $k \geq 1, d \geq 0$, the following are equivalent:

1. G and H are not distinguished by $k-W L$ after d iterations,
2. there exists a pseudo-stochastic matrix X such that

$$
X \boldsymbol{A}_{G}=\boldsymbol{A}_{H} X \quad \text { for all } \boldsymbol{A} \in \mathcal{A}_{k, d}
$$

Spectra for k-WL after d iterations

Theorem

For graphs G and H and $k \geq 1, d \geq 0$, the following are equivalent:

1. G and H are not distinguished by $k-W L$ after d iterations,
2. there exists a pseudo-stochastic matrix X such that

$$
X \boldsymbol{A}_{G}=\boldsymbol{A}_{H} X \quad \text { for all } \boldsymbol{A} \in \mathcal{A}_{k, d}
$$

In particular, certain parts of the spectra of the graph matrices \boldsymbol{A}_{G} and \boldsymbol{A}_{H} are the same.

Spectra for k-WL after d iterations

Theorem

For graphs G and H and $k \geq 1, d \geq 0$, the following are equivalent:

1. G and H are not distinguished by $k-W L$ after d iterations,
2. there exists a pseudo-stochastic matrix X such that

$$
X \boldsymbol{A}_{G}=\boldsymbol{A}_{H} X \quad \text { for all } \boldsymbol{A} \in \mathcal{A}_{k, d}
$$

In particular, certain parts of the spectra of the graph matrices \boldsymbol{A}_{G} and \boldsymbol{A}_{H} are the same.

Homomorphism Indistinguishability

Homomorphism Indistinguishability

\wp

Homomorphism Indistinguishability

Homomorphism Indistinguishability

Homomorphism Indistinguishability

Homomorphism Indistinguishability

24

36

Homomorphism Indistinguishability

24
24

36
36

Homomorphism Indistinguishability

24
24

36

Homomorphism Indistinguishability

Conclusion

- we mapped out the relationship between combinatorial algorithms and spectral graph properties

Conclusion

- we mapped out the relationship between combinatorial algorithms and spectral graph properties
- classical spectral graph properties between 1-WL and 2-WL,

Conclusion

- we mapped out the relationship between combinatorial algorithms and spectral graph properties
- classical spectral graph properties between 1-WL and 2-WL,
- novel spectral characterisations for $k-W L$ after d iterations.

Conclusion

- we mapped out the relationship between combinatorial algorithms and spectral graph properties
- classical spectral graph properties between 1-WL and 2-WL,
- novel spectral characterisations for $k-W L$ after d iterations.
- we introduced (1,1)-WL, a linear space algorithm, separating $1-W L$ plus spectra from 2-WL.

Conclusion

- we mapped out the relationship between combinatorial algorithms and spectral graph properties
- classical spectral graph properties between 1-WL and 2-WL,
- novel spectral characterisations for $k-W L$ after d iterations.
- we introduced (1,1)-WL, a linear space algorithm, separating $1-W L$ plus spectra from 2-WL.
- we contributed algebraic tools for constructing systems of equations for homomorphism indistinguishability.

Bibliography I

Fürer, M. (2010). On the power of combinatorial and spectral invariants. Linear Algebra and its Applications, 432(9):2373-2380.
Godsil, C. D. (1981). Equiarboreal graphs. Combinatorica, 1(2):163-167.
Grohe, M., Rattan, G., and Seppelt, T. (2022). Homomorphism Tensors and Linear Equations. In Bojańczyk, M., Merelli, E., and Woodruff, D. P., editors, 49th International Colloquium on Automata, Languages, and Programming, ICALP 2022, July 4-8, 2022, Paris, France, volume 229 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.
Lovász, L. (1967). Operations with structures. Acta Mathematica Academiae Scientiarum Hungarica, 18(3):321-328.
Mančinska, L. and Roberson, D. E. (2020). Quantum isomorphism is equivalent to equality of homomorphism counts from planar graphs. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), pages 661-672.
Picture: "Bicycle race scene. A peloton of six cyclists crosses the finish line in front of a crowded grandstand, observed by a referee." (1895) by Calvert Lithographic Co., Detroit, Michigan, Public Domain, via Wikimedia Commons.
https://commons.wikimedia.org/wiki/File:Bicycle_race_scene,_1895.jpg

