Weisfeiler-Leman and Graph Spectra

SODA 2023

Gaurav Rattan and Tim Seppelt

RWTH Aachen University

Deutsche Forschungsgemeinschaft

Copyrighted 1895 by CALVERT 2000 (C DETROIT,

 1-WL iteratively colours vertices by the colours of their neighbouring vertices.

- 1-WL iteratively colours vertices by the colours of their neighbouring vertices.
- if two graphs are coloured the same, they are 1-WL indistinguishable.

- 1-WL iteratively colours vertices by the colours of their neighbouring vertices.
- if two graphs are coloured the same, they are 1-WL indistinguishable.
- k-WL is generalisation to k-tuples of vertices,

- 1-WL iteratively colours vertices by the colours of their neighbouring vertices.
- if two graphs are coloured the same, they are 1-WL indistinguishable.
- k-WL is generalisation to k-tuples of vertices,
- ▶ runs in $O(n^{k+1} \log n)$.

- 1-WL iteratively colours vertices by the colours of their neighbouring vertices.
- if two graphs are coloured the same, they are 1-WL indistinguishable.
- k-WL is generalisation to k-tuples of vertices,
- ▶ runs in $O(n^{k+1} \log n)$.

- 1-WL iteratively colours vertices by the colours of their neighbouring vertices.
- if two graphs are coloured the same, they are 1-WL indistinguishable.
- k-WL is generalisation to k-tuples of vertices,
- ▶ runs in $O(n^{k+1} \log n)$.

- 1-WL iteratively colours vertices by the colours of their neighbouring vertices.
- if two graphs are coloured the same, they are 1-WL indistinguishable.
- k-WL is generalisation to k-tuples of vertices,
- ▶ runs in $O(n^{k+1} \log n)$.

What power does it need to distinguish graphs? Weisfeiler-Leman as a yardstick

k-WL

Graphs

Adjacency Matrix Laplacian Matrix **Eigenvectors** Spectral **Graph Matrices** Graphs Properties

 $\begin{pmatrix} 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \end{pmatrix}$ $\pm\sqrt{3}, 1\pm\sqrt{2}, \ldots$ Eigenvalues Adjacency Matrix $\begin{pmatrix} 2 & -1 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 \\ -1 & -1 & 3 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ 0 & 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & 2 & -1 \end{pmatrix}$ $\left(\begin{array}{c}1\\-1\\1\\0\end{array}\right),\ldots$ Laplacian Matrix **Eigenvectors** Commute Distances **Derived Spectral** Spectral **Graph Matrices** Graphs Properties Properties

Outline

Central Questions: How does the power of combinatorial invariants (*k*-WL) and spectral invariants to distinguish graphs compare?

Spectra between 1-WL and 2-WL

Spectra beyond 2-WL

Definition (Fürer's spectral invariant) $\Phi(G) := (\operatorname{Spec} A(G), \{\!\!\{P_v \mid v \in V(G)\}\!\!\})$ where $P_v := (p_{vv}, \{\!\!\{p_{vw} \mid w \in V(G)\}\!\!\})$ aggregates entries of projections onto eigenspace $p_{vw} := (P_{vw}^{(1)}, \dots, P_{vw}^{(k)}).$

Definition (Fürer's spectral invariant) $\Phi(G) := (\operatorname{Spec} A(G), \{\!\!\{P_{\nu} \mid \nu \in V(G)\}\!\!\})$ where $P_{\nu} := (p_{\nu\nu}, \{\!\!\{p_{\nuw} \mid w \in V(G)\}\!\!\})$ aggregates entries of projections onto eigenspace $p_{\nuw} := (P_{\nuw}^{(1)}, \dots, P_{\nuw}^{(k)}).$

Question (Fürer (2010)) $Is \Phi as strong as 2-WL?$

Definition (Fürer's spectral invariant) $\Phi(G) := (\operatorname{Spec} A(G), \{\!\!\{P_{\nu} \mid \nu \in V(G)\}\!\!\})$ where $P_{\nu} := (p_{\nu\nu}, \{\!\!\{p_{\nu w} \mid w \in V(G)\}\!\!\})$ aggregates entries of projections onto eigenspace $p_{\nu w} := (P_{\nu w}^{(1)}, \dots, P_{\nu w}^{(k)}).$

Question (Fürer (2010)) Is Φ as strong as 2-WL?

Theorem

If G and H are (1,1)-WL indistinguishable then $\Phi(G) = \Phi(H)$.

Definition (Fürer's spectral invariant) $\Phi(G) := (\operatorname{Spec} A(G), \{\!\!\{P_{\nu} \mid \nu \in V(G)\}\!\!\})$ where $P_{\nu} := (p_{\nu\nu}, \{\!\!\{p_{\nu w} \mid w \in V(G)\}\!\!\})$ aggregates entries of projections onto eigenspace $p_{\nu w} := (P_{\nu w}^{(1)}, \dots, P_{\nu w}^{(k)}).$

Question (Fürer (2010)) Is Φ as strong as 2-WL? No!

Theorem

If G and H are (1,1)-WL indistinguishable then $\Phi(G) = \Phi(H)$. Hence, Φ is strictly weaker than 2-WL.

(1, 1)-WL

Two graphs G and H are (1, 1)-WL indistinguishable if there is a bijection $\pi: V(G) \to V(H)$ such that the vertex-individualised copies G_v and $H_{\pi(v)}$ are 1-WL indistinguishable for all $v \in V(G)$.

strictly between 1-WL and 2-WL w.r.t. distinguishing power

- strictly between 1-WL and 2-WL w.r.t. distinguishing power
- linear space complexity outperforming 2-WL's quadratic space complexity

- strictly between 1-WL and 2-WL w.r.t. distinguishing power
- linear space complexity outperforming 2-WL's quadratic space complexity
- ▶ (1,1)-WL indistinguishable graphs

- strictly between 1-WL and 2-WL w.r.t. distinguishing power
- linear space complexity outperforming 2-WL's quadratic space complexity
- ▶ (1,1)-WL indistinguishable graphs
 - have cospectral adjacency, Laplacian, etc. matrices, agree in Fürer's spectral invariant answers question of Fürer (2010) negatively

- strictly between 1-WL and 2-WL w.r.t. distinguishing power
- linear space complexity outperforming 2-WL's quadratic space complexity
- ▶ (1,1)-WL indistinguishable graphs
 - have cospectral adjacency, Laplacian, etc. matrices, agree in Fürer's spectral invariant answers question of Fürer (2010) negatively
 - same multiset of commute distances, strengthens a result of Godsil (1981)

- strictly between 1-WL and 2-WL w.r.t. distinguishing power
- linear space complexity outperforming 2-WL's quadratic space complexity
- ▶ (1,1)-WL indistinguishable graphs
 - have cospectral adjacency, Laplacian, etc. matrices, agree in Fürer's spectral invariant answers question of Fürer (2010) negatively
 - same multiset of commute distances, strengthens a result of Godsil (1981)
- augmenting 1-WL with spectral information does not allow to supersede (1, 1)-WL

What power does it need to distinguish graphs? Weisfeiler-Leman as a yardstick

d iterations of k-WL

systems of equations

spectral properties

Theorem

For graphs G and H and $k \ge 1$, $d \ge 0$, the following are equivalent:

- 1. G and H are not distinguished by k-WL after d iterations,
- 2. there exists a pseudo-stochastic matrix X such that

$$X \mathbf{A}_G = \mathbf{A}_H X$$
 for all $\mathbf{A} \in \mathcal{A}_{k,d}$.

Theorem

For graphs G and H and $k \ge 1$, $d \ge 0$, the following are equivalent:

- 1. G and H are not distinguished by k-WL after d iterations,
- 2. there exists a pseudo-stochastic matrix X such that

$$X \mathbf{A}_G = \mathbf{A}_H X$$
 for all $\mathbf{A} \in \mathcal{A}_{k,d}$.

In particular, certain parts of the spectra of the graph matrices A_G and A_H are the same.

Theorem

For graphs G and H and $k \ge 1$, $d \ge 0$, the following are equivalent:

- 1. G and H are not distinguished by k-WL after d iterations,
- 2. there exists a pseudo-stochastic matrix X such that

$$X \mathbf{A}_{G} = \mathbf{A}_{H} X$$
 for all $\mathbf{A} \in \mathcal{A}_{k,d}$.

In particular, certain parts of the spectra of the graph matrices A_G and A_H are the same.

Convigited 1895 by The CALVERT 1000 (C. DETROIT, AUGH

Convigited 1895 by The CALVERT 1000 (Con DETROIT, AUGAN

Trees 1-WL X doubly-stochastic s.t. $XA_G = A_H X$

Copyrighted 1895 b-

Trees 1-WL X doubly-stochastic s.t. $XA_G = A_H X$

Paths X pseudo-stochastic s.t. $XA_G = A_H X$

THE G

Trees 1-WL X doubly-stochastic s.t. $XA_G = A_H X$

Paths X pseudo-stochastic s.t. $XA_G = A_H X$

THE G

Cycles cospectrality of adjacency matrices

Trees 1-WL X doubly-stochastic s.t. $XA_G = A_H X$

Planar Graphs U quantum permutation matrix s.t. $UA_G = A_H U$

Paths X pseudo-stochastic s.t. $XA_G = A_H X$

Tre G

Cycles cospectrality of adjacency matrices

Trees 1-WL X doubly-stochastic s.t. $XA_G = A_H X$

Planar Graphs U quantum permutation matrix s.t. $UA_G = A_H U$

Unified Algebraic Framework

Grohe et al. (2022) Mančinska and Roberson (2020)

Paths X pseudo-stochastic s.t. $XA_G = A_H X$

Tre G

Cycles cospectrality of adjacency matrices

Unified Algebraic Framework Grohe et al. (2022)

10

Grohe et al. (2022) Mančinska and Roberson (2020)

Copyrighted 1895 L.

Unified Algebraic Framework

Grohe et al. (2022) Mančinska and Roberson (2020)

Extension

Graphs with *k***-pebble forest cover of depth** *d*

Carry greet 1895 L-

 we mapped out the relationship between combinatorial algorithms and spectral graph properties

- we mapped out the relationship between combinatorial algorithms and spectral graph properties
 - classical spectral graph properties between 1-WL and 2-WL,

- we mapped out the relationship between combinatorial algorithms and spectral graph properties
 - classical spectral graph properties between 1-WL and 2-WL,
 - novel spectral characterisations for k-WL after d iterations.

- we mapped out the relationship between combinatorial algorithms and spectral graph properties
 - classical spectral graph properties between 1-WL and 2-WL,
 - novel spectral characterisations for k-WL after d iterations.
- we introduced (1, 1)-WL, a linear space algorithm, separating 1-WL plus spectra from 2-WL.

- we mapped out the relationship between combinatorial algorithms and spectral graph properties
 - classical spectral graph properties between 1-WL and 2-WL,
 - novel spectral characterisations for k-WL after d iterations.
- we introduced (1, 1)-WL, a linear space algorithm, separating 1-WL plus spectra from 2-WL.
- we contributed algebraic tools for constructing systems of equations for homomorphism indistinguishability.

Bibliography I

- Fürer, M. (2010). On the power of combinatorial and spectral invariants. *Linear Algebra and its Applications*, 432(9):2373–2380.
- Godsil, C. D. (1981). Equiarboreal graphs. Combinatorica, 1(2):163–167.
- Grohe, M., Rattan, G., and Seppelt, T. (2022). Homomorphism Tensors and Linear Equations. In Bojańczyk, M., Merelli, E., and Woodruff, D. P., editors, 49th International Colloquium on Automata, Languages, and Programming, ICALP 2022, July 4-8, 2022, Paris, France, volume 229 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.
- Lovász, L. (1967). Operations with structures. Acta Mathematica Academiae Scientiarum Hungarica, 18(3):321–328.
- Mančinska, L. and Roberson, D. E. (2020). Quantum isomorphism is equivalent to equality of homomorphism counts from planar graphs. In *2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS)*, pages 661–672.

Picture: "Bicycle race scene. A peloton of six cyclists crosses the finish line in front of a crowded grandstand, observed by a referee." (1895) by Calvert Lithographic Co., Detroit, Michigan, Public Domain, via Wikimedia Commons.

https://commons.wikimedia.org/wiki/File:Bicycle_race_scene,_1895.jpg