Lasserre Hierarchy for Graph Isomorphism and Homomorphism Indistinguishability

David E. Roberson and Tim Seppelt

RWTHAACHEN
DFG
Deutsche
Forschungsgemeinschaft
G and H are isomorphic iff
integer program $\operatorname{ISO}(G, H)$ is feasible

G and H are isomorphic iff integer program $\operatorname{ISO}(G, H)$ is feasible

G and H are isomorphic iff integer program $\operatorname{ISO}(G, H)$ is feasible

G and H are isomorphic iff integer program $\operatorname{ISO}(G, H)$ is feasible

G and H are isomorphic iff integer program $\operatorname{ISO}(G, H)$ is feasible

\therefore

24

36

24

36

24

36

24
24

36
36


```
    24
36
```

The graphs and are homomorphism indistinguishable over $\{0,0,0\}$.

G and H are isomorphic iff
 integer program $\operatorname{ISO}(G, H)$ is feasible

G and H are isomorphic iff
 integer program $\operatorname{ISO}(G, H)$ is feasible

G and H are isomorphic iff
 integer program $\operatorname{ISO}(G, H)$ is feasible

Equations

homomorphism tensors, algebraic operations

Graph Class
(bi)labelled graphs, combinatorial operations

Equations
 homomorphism tensors, algebraic operations

Graph Class
(bi)labelled graphs, combinatorial operations

Labelled Graphs and Homomorphism Vectors

Labelled Graphs and Homomorphism Vectors

$$
\mathcal{F} \longrightarrow \mathbb{C}^{V(G)}
$$

Combinatorial and Algebraic Operations: Unlabelling and Sum-of-Entries

Combinatorial and Algebraic Operations: Gluing and Schur Product

gluing

\odot

$=$

Combinatorial and Algebraic Operations: Gluing and Schur Product

gluing
\odot

I

Combinatorial and Algebraic Operations: Gluing and Schur Product

gluing

\odot

$=$

I
I
I

Schur product

The Graph Class \mathcal{L}_{t}

A (t, t)-bilabelled graph is atomic if all its vertices are labelled.

The Graph Class \mathcal{L}_{t}

A (t, t)-bilabelled graph is atomic if all its vertices are labelled.

The class \mathcal{L}_{t} is generated by atomic graphs under

- series composition,
- parallel composition with atomic graphs,
- permutation of labels.

Upper Bound

- $\mathcal{L}_{t} \subseteq \mathcal{T} \mathcal{W}_{3 t-1}$,

Upper Bound

- $\mathcal{L}_{t} \subseteq \mathcal{T W}_{3 t-1}$,
- \mathcal{L}_{t} contains the clique $K_{3 t}$,

Upper Bound

- $\mathcal{L}_{t} \subseteq \mathcal{T W}_{3 t-1}$,
- \mathcal{L}_{t} contains the clique $K_{3 t}$,
- \mathcal{L}_{t} is minor-closed,

Upper Bound

- $\mathcal{L}_{t} \subseteq \mathcal{T W}_{3 t-1}$,
- \mathcal{L}_{t} contains the clique $K_{3 t}$,
- \mathcal{L}_{t} is minor-closed,
- \mathcal{L}_{1} is the class of all outerplanar graphs.

Lower Bound

\mathcal{L}_{t} is a class of graphs of treewidth $\leq 3 t-1$ containing $K_{3 t}$.

Lower Bound

\mathcal{L}_{t} is a class of graphs of treewidth $\leq 3 t-1$ containing $K_{3 t}$.
Although $\mathcal{L}_{t} \notin \mathcal{T} \mathcal{W}_{3 t-2}$, it could well be that $G \equiv T W_{3 t-2} \mathrm{H} \Longrightarrow \mathrm{G} \equiv \mathcal{\mathcal { C }}_{t} \mathrm{H}$.

Lower Bound

\mathcal{L}_{t} is a class of graphs of treewidth $\leq 3 t-1$ containing $K_{3 t}$.
Although $\mathcal{L}_{t} \nsubseteq \mathcal{T} \mathcal{W}_{3 t-2}$, it could well be that $G \equiv \mathcal{T} \mathcal{N}_{3 t-2} H \Longrightarrow G \equiv_{\mathcal{L}_{t}} H$.
The homomorphism distinguishing closure of a graph class \mathcal{F} is

$$
\operatorname{cl}(\mathcal{F})=\left\{K \text { graph } \mid \forall \operatorname{graphs} G, H . G \equiv_{\mathcal{F}} H \Longrightarrow \operatorname{hom}(K, G)=\operatorname{hom}(K, H)\right\} .
$$

Lower Bound

\mathcal{L}_{t} is a class of graphs of treewidth $\leq 3 t-1$ containing $K_{3 t}$.
Although $\mathcal{L}_{t} \nsubseteq \mathcal{T} \mathcal{W}_{3 t-2}$, it could well be that $G \equiv \mathcal{T} \mathcal{N}_{3 t-2} H \Longrightarrow G \equiv \mathcal{L}_{t} H$.
The homomorphism distinguishing closure of a graph class \mathcal{F} is

$$
\operatorname{cl}(\mathcal{F})=\left\{K \text { graph } \mid \forall \operatorname{graphs} G, H . G \equiv_{\mathcal{F}} H \Longrightarrow \operatorname{hom}(K, G)=\operatorname{hom}(K, H)\right\}
$$

Conjecture (Roberson (2022))

Every minor-closed union-closed graph class is homomorphism distinguishing closed.

Roberson's Conjecture: State of Affairs

Conjecture (Roberson (2022))
Every minor-closed union-closed graph class is homomorphism distinguishing closed.

Roberson's Conjecture: State of Affairs

Conjecture (Roberson (2022))
Every minor-closed union-closed graph class is homomorphism distinguishing closed.

Theorem (Neuen (2023))
$\mathcal{T} \mathcal{W}_{k}$ is homomorphism distinguishing closed.

Roberson's Conjecture: State of Affairs

Conjecture (Roberson (2022))
Every minor-closed union-closed graph class is homomorphism distinguishing closed.

Theorem (Neuen (2023))
$\mathcal{T W}_{k}$ is homomorphism distinguishing closed.

Corollary

For every $t \geq 1$, there are graphs G and H such that $G \simeq_{3 t-1}^{S A} H$ and $G \not \chi_{t}^{t} H$.

G and H are isomorphic iff
 integer program $\operatorname{ISO}(G, H)$ is feasible

\square
Lasserre
semidefinite prog.

G and H are isomorphic iff
 integer program $\operatorname{ISO}(G, H)$ is feasible

G and H are isomorphic iff
 integer program $\operatorname{ISO}(G, H)$ is feasible

G and H are isomorphic iff
 integer program $\operatorname{ISO}(G, H)$ is feasible

Lasserre with non-negativity constraints

Lasserre with non-negativity constraints

Theorem

Exact feasibility of the level-t Lasserre relaxation with non-negativity constraints of $\operatorname{ISO}(G, H)$ can be decided in polynomial time.

Conclusion

- Determined number of Sherali-Adams levels necessary to guarantee feasibility of Lasserre

G and H are isomorphic iff
integer program $\operatorname{ISO}(G, H)$ is feasible

Conclusion

- Determined number of Sherali-Adams levels necessary to
guarantee feasibility of Lasserre

G and H are isomorphic iff

integer program $\operatorname{ISO}(G, H)$ is feasible

- Homomorphism indistinguishability characterisations

Conclusion

- Determined number of Sherali-Adams levels necessary to guarantee feasibility of Lasserre
G and H are isomorphic iff
integer program $\operatorname{ISO}(G, H)$ is feasible
- Homomorphism indistinguishability characterisations
- PTIME algorithm for non-negative Lasserre

Conclusion

- Determined number of Sherali-Adams levels necessary to guarantee feasibility of Lasserre
- Homomorphism indistinguishability characterisations
- PTIME algorithm for non-negative Lasserre
- What about the number of Lasserre levels necessary to guarantee feasibility of Sherali-Adams?

G and H are isomorphic iff

integer program $\operatorname{ISO}(G, H)$ is feasible

Extras: Lasserre

Let $t \geq 1$. The level-t Lasserre relaxation for graph isomorphism has variables y_{1} ranging over \mathbb{R} for $I \in(\underset{\leq 2 t}{V(G) \times V(H)})$. The constraints are

$$
\begin{aligned}
\left.M_{t}(y):=\left(y_{\|}\right)\right)_{1, J \in\binom{V(G) \times v(H)}{\leq t}} & \succeq 0, \\
\sum_{h \in V(H)} y_{l \cup\{g h\}} & =y_{l} \text { for all } I \text { s.t. } \mid \| \leq 2 t-2 \text { and all } g \in V(G), \\
\sum_{g \in V(G)} y_{l \cup\{g h\}} & =y_{l} \text { for all } \mid \text { s.t. } \mid \| \leq 2 t-2 \text { and all } h \in V(H), \\
y_{l} & =0 \text { if } \mid \text { s.t. }|\mid \leq 2 t \text { is not partial isomorphism } \\
y_{\emptyset} & =1 .
\end{aligned}
$$

Extras: Sherali-Adams

Let $t \geq 1$. The level-t Sherali-Adams relaxation for graph isomorphism has variables y_{l}, ranging over \mathbb{R} for $I \in(\underset{\leq t}{V(G) \times V(H)})$. The constraints are

$$
\begin{aligned}
\sum_{h \in V(H)} y_{l \cup\{g h\}} & =y_{l} \text { for all } \mid \text { s.t. }|I| \leq t-1 \text { and all } g \in V(G), \\
\sum_{g \in V(G)} y_{l \cup\{g h\}} & =y_{l} \text { for all } \mid \text { s.t. }|I| \leq t-1 \text { and all } h \in V(H), \\
y_{l} & =0 \text { if } \mid \text { s.t. } \mid \| \leq t \text { is not partial isomorphism } \\
y_{\emptyset} & =1 .
\end{aligned}
$$

Extra: Graph Classes

Bibliography i

References

Atserias, A. and Maneva, E. (2012). Sherali-Adams Relaxations and Indistinguishability in Counting Logics. In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, ITCS '12, pages 367-379, New York, NY, USA. Association for Computing Machinery.
Atserias, A. and Maneva, E. (2013). Sherali-Adams Relaxations and Indistinguishability in Counting Logics. SIAM Journal on Computing, 42(1):112-137.
Atserias, A. and Ochremiak, J. (2018). Definable ellipsoid method, sums-of-squares proofs, and the isomorphism problem. In Dawar, A. and Grädel, E., editors, Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages 66-75. ACM.

Bibliography ii

Dvořák, Z. (2010). On recognizing graphs by numbers of homomorphisms. Journal of Graph Theory, 64(4):330-342.
Grohe, M. and Otto, M. (2015). Pebble Games and Linear Equations. The Journal of Symbolic Logic, 80(3):797-844.
Neuen, D. (2023). Homomorphism-Distinguishing Closedness for Graphs of Bounded Tree-Width. arXiv:2304.07011 [cs, math].

Roberson, D. E. (2022). Oddomorphisms and homomorphism indistinguishability over graphs of bounded degree. Number: arXiv:2206.10321.

Picture: "Bicycle race scene. A peloton of six cyclists crosses the finish line in front of a crowded grandstand, observed by a referee." (1895) by Calvert Lithographic Co., Detroit, Michigan, Public Domain, via Wikimedia Commons. https:
//commons.wikimedia.org/wiki/File:Bicycle_race_scene,_1895.jpg

