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The Graph Class Lt

A (t, t)-bilabelled graph is atomic if all its vertices are labelled.

The class Lt is generated by atomic graphs under
• series composition,
• parallel composition with atomic graphs,
• permutation of labels.
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Lower Bound

Lt is a class of graphs of treewidth ≤ 3t − 1 containing K3t.

Although Lt 6⊆ T W3t−2, it could well be that G ≡T W3t−2 H =⇒ G ≡Lt H.

The homomorphism distinguishing closure of a graph class F is

cl(F) = {K graph | ∀graphs G,H. G ≡F H =⇒ hom(K,G) = hom(K,H)}.

Conjecture (Roberson (2022))
Every minor-closed union-closed graph class is homomorphism distinguishing
closed.
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Roberson’s Conjecture: State of Affairs

Conjecture (Roberson (2022))
Every minor-closed union-closed graph class is homomorphism distinguishing
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Theorem (Neuen (2023))
T Wk is homomorphism distinguishing closed.

Corollary
For every t ≥ 1, there are graphs G and H such that G 'SA

3t−1 H and G 6'L
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Conclusion
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Extras: Lasserre

Let t ≥ 1. The level-t Lasserre relaxation for graph isomorphism has variables yI
ranging over R for I ∈

(V(G)×V(H)
≤2t

)
. The constraints are

Mt(y) := (yI∪J)I,J∈(V(G)×V(H)
≤t ) � 0,∑

h∈V(H)
yI∪{gh} = yI for all I s.t. |I| ≤ 2t − 2 and all g ∈ V(G),

∑
g∈V(G)

yI∪{gh} = yI for all I s.t. |I| ≤ 2t − 2 and all h ∈ V(H),

yI = 0 if I s.t. |I| ≤ 2t is not partial isomorphism
y∅ = 1.



Extras: Sherali–Adams

Let t ≥ 1. The level-t Sherali–Adams relaxation for graph isomorphism has
variables yI ranging over R for I ∈

(V(G)×V(H)
≤t

)
. The constraints are∑

h∈V(H)
yI∪{gh} = yI for all I s.t. |I| ≤ t − 1 and all g ∈ V(G),

∑
g∈V(G)

yI∪{gh} = yI for all I s.t. |I| ≤ t − 1 and all h ∈ V(H),

yI = 0 if I s.t. |I| ≤ t is not partial isomorphism
y∅ = 1.



Extra: Graph Classes

OP PW2t−1 T Wmax{2t−1,2}

T Wt−1 Lt L+
t T W3t−1
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Michigan, Public Domain, via Wikimedia Commons. https:
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