

\therefore

24

24

36

24

36

?

24

36

24
24

36
36


```
    24
36
```

The graphs and are homomorphism indistinguishable over $\{0,0,0\}$.

Homomorphism Indistinguishability

graph class \mathcal{F} all graphs isomorphism
planar graphs quantum isomorphism
treewidth $\leq k \quad C^{k+1}$-equivalence

Lovász (1967)
Mančinska and Roberson (2020)
Dvořák (2010)

Homomorphism Indistinguishability

graph class \mathcal{F} relation $\equiv_{\mathcal{F}}$
all graphs isomorphism
planar graphs quantum isomorphism
treewidth $\leq k \quad C^{k+1}$-equivalence
Lovász (1967)
Mančinska and Roberson (2020)
$\cup^{\mathfrak{C}} \mathrm{EM}_{f}(\mathfrak{C}) \quad \cong_{\mathcal{K}(\mathfrak{C})}$ of finite-rank comonad $\mathfrak{C} \quad$ Reggio (2021)

Towards a Theory of Homomorphism Indistinguishability

Measuring the power of homomorphism indistinguishability relations

Characterising homomorphism indistinguishability relations

Measuring the power of homomorphism indistinguishability relations

G and H are isomorphic iff
 integer program $\operatorname{ISO}(G, H)$ is feasible

G and H are isomorphic iff integer program $\operatorname{ISO}(G, H)$ is feasible

G and H are isomorphic iff integer program $\operatorname{ISO}(G, H)$ is feasible

G and H are isomorphic iff integer program $\operatorname{ISO}(G, H)$ is feasible

G and H are isomorphic iff integer program $\operatorname{ISO}(G, H)$ is feasible

G and H are isomorphic iff
 integer program $\operatorname{ISO}(G, H)$ is feasible

G and H are isomorphic iff
 integer program $\operatorname{ISO}(G, H)$ is feasible

Equations

homomorphism tensors, algebraic operations

Graph Class
(bi)labelled graphs, combinatorial operations

Equations
 homomorphism tensors, algebraic operations

Graph Class
(bi)labelled graphs, combinatorial operations

Upper Bound

- $\mathcal{L}_{t} \subseteq \mathcal{T} \mathcal{W}_{3 t-1}$,

Upper Bound

- $\mathcal{L}_{t} \subseteq \mathcal{T} \mathcal{W}_{3 t-1}$,
- \mathcal{L}_{t} contains the clique $K_{3 t}$,

Upper Bound

- $\mathcal{L}_{t} \subseteq \mathcal{T W}_{3 t-1}$,
- \mathcal{L}_{t} contains the clique $K_{3 t}$,
- \mathcal{L}_{t} is minor-closed,

Lower Bound

\mathcal{L}_{t} is a class of graphs of treewidth $\leq 3 t-1$ containing $K_{3 t}$.

Lower Bound

\mathcal{L}_{t} is a class of graphs of treewidth $\leq 3 t-1$ containing $K_{3 t}$.
Although $\mathcal{L}_{t} \nsubseteq \mathcal{T} \mathcal{W}_{3 t-2}$, it could well be that $G \equiv \mathcal{T} \mathcal{W}_{3 t-2} \mathrm{H} \Longrightarrow G \equiv_{\mathcal{L}_{t}} \mathrm{H}$.

Lower Bound

\mathcal{L}_{t} is a class of graphs of treewidth $\leq 3 t-1$ containing $K_{3 t}$.
Although $\mathcal{L}_{t} \nsubseteq \mathcal{T} \mathcal{N}_{3 t-2}$, it could well be that $G \equiv \mathcal{T} \mathcal{N}_{3 t-2} H \Longrightarrow G \equiv \mathcal{L}_{t} H$.
A graph class \mathcal{F} is homomorphism distinguishing closed if
for all $F \notin \mathcal{F}$ there exist G and H such that $G \equiv_{\mathcal{F}} H$ and $\operatorname{hom}(F, G) \neq \operatorname{hom}(F, H)$.

Lower Bound

\mathcal{L}_{t} is a class of graphs of treewidth $\leq 3 t-1$ containing $K_{3 t}$.
Although $\mathcal{L}_{t} \notin \mathcal{T} \mathcal{W}_{3 t-2}$, it could well be that $G \equiv \tau W_{3 t-2} \mathrm{H} \Longrightarrow \mathrm{G} \equiv_{\mathcal{C}_{t}} \mathrm{H}$.
A graph class \mathcal{F} is homomorphism distinguishing closed if
for all $F \notin \mathcal{F}$ there exist G and H such that $G \equiv_{\mathcal{F}} H$ and $\operatorname{hom}(F, G) \neq \operatorname{hom}(F, H)$.
Conjecture (Roberson (2022))
Every minor-closed union-closed graph class is homomorphism distinguishing closed.

Roberson's Conjecture: State of Affairs

Conjecture (Roberson (2022))
Every minor-closed union-closed graph class is homomorphism distinguishing closed.

Roberson's Conjecture: State of Affairs

Conjecture (Roberson (2022))
Every minor-closed union-closed graph class is homomorphism distinguishing closed.

- treewidth $\leq k$,
- treedepth $\leq q$,
- planar graphs,
- essentially finite graph classes.

Neuen (2023)
Fluck, S., \& Spitzer (2023+)
Roberson (2022)
S. (2023)

Roberson's Conjecture: State of Affairs

Conjecture (Roberson (2022))
Every minor-closed union-closed graph class is homomorphism distinguishing closed.

- treewidth $\leq k$,
- treedepth $\leq q$,
- planar graphs,
- essentially finite graph classes.

Neuen (2023)
Fluck, S., \& Spitzer (2023+)
Roberson (2022)
S. (2023)

Corollary (Roberson and S. (2023))
For every $t \geq 1$, there are graphs G and H such that $G \simeq_{3 t-1}^{S A} H$ and $G \not \chi_{t}^{L} H$.

G and H are isomorphic iff
 integer program $\operatorname{ISO}(G, H)$ is feasible

\vdots
3
2
1
Lasserre
semidefinite prog.

G and H are isomorphic iff
 integer program $\operatorname{ISO}(G, H)$ is feasible

G and H are isomorphic iff
 integer program $\operatorname{ISO}(G, H)$ is feasible

G and H are isomorphic iff
 integer program $\operatorname{ISO}(G, H)$ is feasible

Characterising homomorphism indistinguishability relations

Properties of Homomorphism Indistinguishability Relations

Observation ($\equiv_{\mathcal{F}}$ is preserved under categorical products) If $G_{1} \equiv_{\mathcal{F}} H_{1}$ and $G_{2} \equiv_{\mathcal{F}} H_{2}$ then $G_{1} \times G_{2} \equiv_{\mathcal{F}} H_{1} \times H_{2}$.

Properties of Homomorphism Indistinguishability Relations

Observation ($\equiv_{\mathcal{F}}$ is preserved under categorical products) If $G_{1} \equiv_{\mathcal{F}} H_{1}$ and $G_{2} \equiv_{\mathcal{F}} H_{2}$ then $G_{1} \times G_{2} \equiv_{\mathcal{F}} H_{1} \times H_{2}$.

For every graph F,

$$
\operatorname{hom}\left(F, G_{1} \times G_{2}\right)=\operatorname{hom}\left(F, G_{1}\right) \operatorname{hom}\left(F, G_{2}\right)
$$

Properties of Homomorphism Indistinguishability Relations

Closure properties of \mathcal{F} correspond to preservation properties of $\equiv_{\mathcal{F}}$.

Properties of Homomorphism Indistinguishability Relations

Closure properties of \mathcal{F} correspond to preservation properties of $\equiv_{\mathcal{F}}$.
Theorem (S. (2023))
For every homomorphism distinguishing closed graph class \mathcal{F}, tfae:
\mathcal{F} is closed under $\equiv_{\mathcal{F}}$ is preserved under
minors
complements

$$
G \mapsto \bar{G}
$$

Properties of Homomorphism Indistinguishability Relations

Closure properties of \mathcal{F} correspond to preservation properties of $\equiv_{\mathcal{F}}$.
Theorem (S. (2023))
For every homomorphism distinguishing closed graph class \mathcal{F}, tfae:
\mathcal{F} is closed under $\equiv_{\mathcal{F}}$ is preserved under
minors
summands
complements
disjoint unions

$$
\begin{aligned}
& G \mapsto \bar{G} \\
& (G, H) \mapsto G+H
\end{aligned}
$$

Properties of Homomorphism Indistinguishability Relations

Closure properties of \mathcal{F} correspond to preservation properties of $\equiv_{\mathcal{F}}$.

Theorem (S. (2023))

For every homomorphism distinguishing closed graph class \mathcal{F}, tfae:

\mathcal{F} is closed under	$\equiv_{\mathcal{F}}$ is preserved under	
minors	complements	$G \mapsto \bar{G}$
summands	disjoint unions	$(G, H) \mapsto G+H$
subgraphs	full complements	$G \mapsto \widehat{G}$
induced subgraphs	left lexicographic products	$H \mapsto G[H]$ for every G
contracting edges	right lexicographic products	$G \mapsto G[H]$ for every H.

Self-complementary Logics

Theorem (S. (2023))
For every homomorphism distinguishing closed graph class \mathcal{F}, tfae:

\mathcal{F} is closed under $\equiv_{\mathcal{F}}$ is preserved under

minors complements

- Feasibility of integer programming relaxations for graph isomorphism Graphs are encoded via atomic types of vertex tuples

Self-complementary Logics

Theorem (S. (2023))

For every homomorphism distinguishing closed graph class \mathcal{F}, tfae:

\mathcal{F} is closed under $\equiv_{\mathcal{F}}$ is preserved under

minors
complements

- Feasibility of integer programming relaxations for graph isomorphism Graphs are encoded via atomic types of vertex tuples
- Self-complementary logics (L, \models)

For every sentence $\varphi \in \mathrm{L}$, there is $\bar{\varphi} \in \mathrm{L}$ such that $G \models \varphi \Longleftrightarrow \bar{G} \models \bar{\varphi}$. E.g., replace Exy by \neg Exy $\wedge(x \neq y)$.

Ruling out Homomorphism Indistinguishability Relations

```
Theorem (S. (2023))
For every homomorphism distinguishing closed graph class \mathcal{F}, tfae:
\mathcal { F } \text { is closed under } \equiv _ { \mathcal { F } } \text { is preserved under}
    minors complements
```


Ruling out Homomorphism Indistinguishability Relations

Theorem (S. (2023))
For every homomorphism distinguishing closed graph class \mathcal{F}, tfae:

```
\mathcal { F } \text { is closed under } \equiv _ { \mathcal { F } } \text { is preserved under}
    minors complements
```

Corollary (Atserias et al. (2021))
FO ${ }^{k}$-equivalence is not a homomorphism indistinguishability relation.

Ruling out Homomorphism Indistinguishability Relations

Theorem (S. (2023))
For every homomorphism distinguishing closed graph class \mathcal{F}, tfae:

```
\mathcal { F } \text { is closed under } \equiv _ { \mathcal { F } } \text { is preserved under}
    minors complements
```

Corollary (Atserias et al. (2021))
FO ${ }^{k}$-equivalence is not a homomorphism indistinguishability relation.
FO^{k} is self-complementary.

Ruling out Homomorphism Indistinguishability Relations

Theorem (S. (2023))
For every homomorphism distinguishing closed graph class \mathcal{F}, tfae:
\mathcal{F} is closed under $\equiv_{\mathcal{F}}$ is preserved under
minors
complements
Corollary (Atserias et al. (2021))
FO ${ }^{k}$-equivalence is not a homomorphism indistinguishability relation.
FO^{k} is self-complementary.
Suppose $\equiv_{\mathcal{F}}$ characterises $\mathrm{FO}^{\boldsymbol{k}}$-equivalence. Wlog \mathcal{F} is minor-closed.

Ruling out Homomorphism Indistinguishability Relations

Theorem (S. (2023))

For every homomorphism distinguishing closed graph class \mathcal{F}, tfae:
\mathcal{F} is closed under $\equiv_{\mathcal{F}}$ is preserved under
minors complements

Corollary (Atserias et al. (2021))
FO ${ }^{k}$-equivalence is not a homomorphism indistinguishability relation.
FO^{k} is self-complementary.
Suppose $\equiv_{\mathcal{F}}$ characterises FO^{k}-equivalence. Wlog \mathcal{F} is minor-closed.
$K_{k} \equiv_{\mathrm{FO}^{k}} K_{k+1}$ but $\operatorname{hom}\left(K_{1}, K_{k}\right) \neq \operatorname{hom}\left(K_{1}, K_{k+1}\right)$, so $K_{1} \notin \mathcal{F}$, contradiction!

Graph Minor Theory rules out Homomorphism Indistinguishability

Theorem (Robertson and Seymour (1986))
For a minor-closed graph class \mathcal{F}, tfae:

- F has unbounded treewidth,
- F contains all planar graphs.

Graph Minor Theory rules out Homomorphism Indistinguishability

Theorem (Robertson and Seymour (1986))
For a minor-closed graph class \mathcal{F}, tfae:

- F has unbounded treewidth,
- \mathcal{F} contains all planar graphs.

Corollary (S. (2023))
Let L be a self-complementary logic. Suppose that

- L-equivalence is homomorphism indistinguishability relation,

Graph Minor Theory rules out Homomorphism Indistinguishability

Theorem (Robertson and Seymour (1986))
For a minor-closed graph class \mathcal{F}, tfae:

- F has unbounded treewidth,
- \mathcal{F} contains all planar graphs.

Corollary (S. (2023))

Let L be a self-complementary logic. Suppose that

- L-equivalence is homomorphism indistinguishability relation,
- for every $k \in \mathbb{N}$, there exist graphs G and H such that $G \equiv_{C^{k}} H$ and $G \not \equiv L H$.

Graph Minor Theory rules out Homomorphism Indistinguishability

Theorem (Robertson and Seymour (1986))

For a minor-closed graph class \mathcal{F}, tfae:

- F has unbounded treewidth,
- \mathcal{F} contains all planar graphs.

Corollary (S. (2023))

Let L be a self-complementary logic. Suppose that

- L-equivalence is homomorphism indistinguishability relation,
- for every $k \in \mathbb{N}$, there exist graphs G and H such that $G \equiv_{C^{k}} H$ and $G \not \equiv L H$.

Then all L-equivalent graphs are quantum isomorphic.

Outlook: Logics stronger than Weisfeiler-Leman

Theorem (Lichter, Pago, S. (2023+))
$L A^{k}(Q)$-equivalence is not a homomorphism indistinguishable relation.

Outlook: Logics stronger than Weisfeiler-Leman

Theorem (Lichter, Pago, S. (2023+))
$L A^{k}(Q)$-equivalence is not a homomorphism indistinguishable relation.
LA $^{k}(Q)$ does not distinguish CFI-like graphs over some planar base graph.

Outlook: Logics stronger than Weisfeiler-Leman

Theorem (Lichter, Pago, S. (2023+))
$L A^{k}(Q)$-equivalence is not a homomorphism indistinguishable relation.
$L A^{k}(Q)$ does not distinguish CFI-like graphs over some planar base graph. Roberson (2022): CFI-like graphs over planar base graph are not quantum isomorphic

Outlook: Logics stronger than Weisfeiler-Leman

Theorem (Lichter, Pago, S. (2023+))
$L A^{k}(Q)$-equivalence is not a homomorphism indistinguishable relation.
$L A^{k}(Q)$ does not distinguish CFI-like graphs over some planar base graph.
Roberson (2022): CFI-like graphs over planar base graph are not quantum isomorphic

Corollary

$L A^{k}(Q)$-equivalence cannot be characterised as co-Kleisli isomorphism w.r.t. any comonad of finite rank.

Computability and Complexity

For a graph class \mathcal{F}, consider $\operatorname{Homind}(\mathcal{F})$
Input graphs G and H
Decide $G \equiv_{\mathcal{F}} H$.

Computability and Complexity

For a graph class \mathcal{F}, consider $\operatorname{Homind}(\mathcal{F})$
Input graphs G and H
Decide $G \equiv_{\mathcal{F}} H$.

Question

For a minor-closed \mathcal{F}, either
\mathcal{F} contains all graphs and $\operatorname{HomIND}(\mathcal{F})$ is Graph Isomorphism,
\mathcal{F} has bounded treewidth and $\operatorname{HomIn}(\mathcal{F})$ is decidable, or
\mathcal{F} has unbounded treewidth and $\operatorname{Hom} \operatorname{lnd}(\mathcal{F})$ is undecidable.

Conclusion

- Roberson's conjecture and homomorphism distinguishing closure

G and H are isomorphic iff

integer program $\operatorname{ISO}(G, H)$ is feasible

linear prog.

Conclusion

- Roberson's conjecture and homomorphism distinguishing closure
- Closure properties correspond to preservation properties

Conclusion

- Roberson's conjecture and homomorphism distinguishing closure
- Closure properties correspond to preservation properties
- Complexity and computability of Homind (\mathcal{F})

Conclusion

- Roberson's conjecture and homomorphism distinguishing closure
- Closure properties correspond to preservation properties
- Complexity and computability of Homind (\mathcal{F})
- Check out 2302.11290 and 2302.10538!

G and H are isomorphic iff

integer program $\operatorname{ISO}(G, H)$ is feasible

Extras: Lasserre

Let $t \geq 1$. The level-t Lasserre relaxation for graph isomorphism has variables y_{1} ranging over \mathbb{R} for $I \in(\underset{\leq 2 t}{V(G) \times V(H)})$. The constraints are

$$
\begin{aligned}
\left.M_{t}(y):=\left(y_{\|}\right)\right)_{1, J \in\binom{V(G) \times v(H)}{\leq t}} & \succeq 0, \\
\sum_{h \in V(H)} y_{l \cup\{g h\}} & =y_{l} \text { for all } I \text { s.t. } \mid \| \leq 2 t-2 \text { and all } g \in V(G), \\
\sum_{g \in V(G)} y_{l \cup\{g h\}} & =y_{l} \text { for all } \mid \text { s.t. } \mid \| \leq 2 t-2 \text { and all } h \in V(H), \\
y_{l} & =0 \text { if } \mid \text { s.t. }|\mid \leq 2 t \text { is not partial isomorphism } \\
y_{\emptyset} & =1 .
\end{aligned}
$$

Extras: Sherali-Adams

Let $t \geq 1$. The level-t Sherali-Adams relaxation for graph isomorphism has variables y_{l}, ranging over \mathbb{R} for $I \in(\underset{\leq t}{V(G) \times V(H)})$. The constraints are

$$
\begin{aligned}
\sum_{h \in V(H)} y_{l \cup\{g h\}} & =y_{l} \text { for all } \mid \text { s.t. }|I| \leq t-1 \text { and all } g \in V(G), \\
\sum_{g \in V(G)} y_{l \cup\{g h\}} & =y_{l} \text { for all } \mid \text { s.t. }|I| \leq t-1 \text { and all } h \in V(H), \\
y_{l} & =0 \text { if } \mid \text { s.t. } \mid \| \leq t \text { is not partial isomorphism } \\
y_{\emptyset} & =1 .
\end{aligned}
$$

Extra: Graph Classes

The Graph Class \mathcal{L}_{t}

A (t, t)-bilabelled graph is atomic if all its vertices are labelled.

The Graph Class \mathcal{L}_{t}

A (t, t)-bilabelled graph is atomic if all its vertices are labelled.

The class \mathcal{L}_{t} is generated by atomic graphs under

- series composition,
- parallel composition with atomic graphs,

Bibliography i

References

Atserias, A., Kolaitis, P. G., and Wu, W. (2021). On the expressive power of homomorphism counts. In 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1-13. IEEE.

Atserias, A. and Maneva, E. (2012). Sherali-Adams Relaxations and Indistinguishability in Counting Logics. In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, ITCS '12, pages 367-379, New York, NY, USA. Association for Computing Machinery.

Bibliography ii

Atserias, A. and Ochremiak, J. (2018). Definable ellipsoid method, sums-of-squares proofs, and the isomorphism problem. In Dawar, A. and Grädel, E., editors, Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages 66-75. ACM.
Dvořák, Z. (2010). On recognizing graphs by numbers of homomorphisms. Journal of Graph Theory, 64(4):330-342.
Grohe, M. and Otto, M. (2015). Pebble Games and Linear Equations. The Journal of Symbolic Logic, 80(3):797-844.
Lovász, L. (1967). Operations with structures. Acta Mathematica Academiae Scientiarum Hungarica, 18(3):321-328.
Mančinska, L. and Roberson, D. E. (2020). Quantum isomorphism is equivalent to equality of homomorphism counts from planar graphs. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), pages 661-672.

Bibliography iii

Neuen, D. (2023). Homomorphism-Distinguishing Closedness for Graphs of Bounded Tree-Width. arXiv:2304.07011 [cs, math].
Reggio, L. (2021). Polyadic Sets and Homomorphism Counting. arXiv:2110.11061 [cs, math]. arXiv: 2110.11061.
Roberson, D. E. (2022). Oddomorphisms and homomorphism indistinguishability over graphs of bounded degree. Number: arXiv:2206.10321.
Robertson, N. and Seymour, P. (1986). Graph minors. V. Excluding a planar graph. Journal of Combinatorial Theory, Series B, 41(1):92-114.

Picture: "Bicycle race scene. A peloton of six cyclists crosses the finish line in front of a crowded grandstand, observed by a referee." (1895) by Calvert Lithographic Co., Detroit, Michigan, Public Domain, via Wikimedia Commons. https:
//commons.wikimedia.org/wiki/File:Bicycle_race_scene,_1895.jpg

