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Homomorphism Indistinguishability

graph class F relation ≡F

all graphs isomorphism Lovász (1967)
planar graphs quantum isomorphism Mančinska and Roberson (2020)
treewidth ≤ k Ck+1-equivalence Dvořák (2010)

UC EMf (C) ∼=K(C) of finite-rank comonad C Reggio (2021)
… …
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Towards a Theory of Homomorphism Indistinguishability

Measuring the power of homomorphism indistinguishability relations

Characterising homomorphism indistinguishability relations
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Measuring the power of
homomorphism indistinguishability
relations
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Equations
homomorphism tensors,
algebraic operations

Graph Class
(bi)labelled graphs,

combinatorial operations
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Upper Bound

• Lt ⊆ T W3t−1,

• Lt contains the clique K3t,
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Lower Bound

Lt is a class of graphs of treewidth ≤ 3t − 1 containing K3t.

Although Lt 6⊆ T W3t−2, it could well be that G ≡T W3t−2 H =⇒ G ≡Lt H.

A graph class F is homomorphism distinguishing closed if

for all F 6∈ F there exist G and H such that G ≡F H and hom(F,G) 6= hom(F,H).

Conjecture (Roberson (2022))
Every minor-closed union-closed graph class is homomorphism distinguishing
closed.
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Roberson’s Conjecture: State of Affairs

Conjecture (Roberson (2022))
Every minor-closed union-closed graph class is homomorphism distinguishing
closed.

• treewidth ≤ k, Neuen (2023)
• treedepth ≤ q, Fluck, S., & Spitzer (2023+)
• planar graphs, Roberson (2022)
• essentially finite graph classes. S. (2023)

Corollary (Roberson and S. (2023))
For every t ≥ 1, there are graphs G and H such that G 'SA

3t−1 H and G 6'L
t H.
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Characterising homomorphism
indistinguishability relations



Properties of Homomorphism Indistinguishability Relations

Observation (≡F is preserved under categorical products)
If G1 ≡F H1 and G2 ≡F H2 then G1 × G2 ≡F H1 × H2.

For every graph F,

hom(F,G1 × G2) = hom(F,G1) hom(F,G2).
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Properties of Homomorphism Indistinguishability Relations

Closure properties of F correspond to preservation properties of ≡F .

Theorem (S. (2023))
For every homomorphism distinguishing closed graph class F , tfae:

F is closed under ≡F is preserved under
minors complements G 7→ G
summands disjoint unions (G,H) 7→ G+ H
subgraphs full complements G 7→ Ĝ
induced subgraphs left lexicographic products H 7→ G[H] for every G
contracting edges right lexicographic products G 7→ G[H] for every H.
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Self-complementary Logics

Theorem (S. (2023))
For every homomorphism distinguishing closed graph class F , tfae:

F is closed under ≡F is preserved under
minors complements

• Feasibility of integer programming relaxations for graph isomorphism
Graphs are encoded via atomic types of vertex tuples

• Self-complementary logics (L, |=)

For every sentence ϕ ∈ L, there is ϕ ∈ L such that G |= ϕ ⇐⇒ G |= ϕ.
E.g., replace Exy by ¬Exy ∧ (x 6= y).

13 / 18



Self-complementary Logics

Theorem (S. (2023))
For every homomorphism distinguishing closed graph class F , tfae:

F is closed under ≡F is preserved under
minors complements

• Feasibility of integer programming relaxations for graph isomorphism
Graphs are encoded via atomic types of vertex tuples

• Self-complementary logics (L, |=)

For every sentence ϕ ∈ L, there is ϕ ∈ L such that G |= ϕ ⇐⇒ G |= ϕ.
E.g., replace Exy by ¬Exy ∧ (x 6= y).

13 / 18



Ruling out Homomorphism Indistinguishability Relations

Theorem (S. (2023))
For every homomorphism distinguishing closed graph class F , tfae:

F is closed under ≡F is preserved under
minors complements

Corollary (Atserias et al. (2021))
FOk-equivalence is not a homomorphism indistinguishability relation.

FOk is self-complementary.

Suppose ≡F characterises FOk-equivalence. Wlog F is minor-closed.

Kk ≡FOk Kk+1 but hom(K1, Kk) 6= hom(K1, Kk+1), so K1 6∈ F , contradiction!
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Graph Minor Theory rules out Homomorphism Indistinguishability

Theorem (Robertson and Seymour (1986))
For a minor-closed graph class F , tfae:

• F has unbounded treewidth,
• F contains all planar graphs.

Corollary (S. (2023))
Let L be a self-complementary logic. Suppose that

• L-equivalence is homomorphism indistinguishability relation,
• for every k ∈ N, there exist graphs G and H such that G ≡Ck H and G 6≡L H.

Then all L-equivalent graphs are quantum isomorphic.
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Outlook: Logics stronger than Weisfeiler–Leman

Theorem (Lichter, Pago, S. (2023+))
LAk(Q)-equivalence is not a homomorphism indistinguishable relation.

LAk(Q) does not distinguish CFI-like graphs over some planar base graph.

Roberson (2022): CFI-like graphs over planar base graph are not quantum
isomorphic

Corollary
LAk(Q)-equivalence cannot be characterised as co-Kleisli isomorphism w.r.t. any
comonad of finite rank.
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Computability and Complexity

For a graph class F , consider HomInd(F)

Input graphs G and H
Decide G ≡F H.

Question
For a minor-closed F , either

F contains all graphs and HomInd(F) is Graph Isomorphism,
F has bounded treewidth and HomInd(F) is decidable, or
F has unbounded treewidth and HomInd(F) is undecidable.
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Conclusion

• Roberson’s conjecture and
homomorphism distinguishing
closure

• Closure properties correspond to
preservation properties

• Complexity and computability of
HomInd(F)

• Check out 2302.11290 and 2302.10538!
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Extras: Lasserre

Let t ≥ 1. The level-t Lasserre relaxation for graph isomorphism has variables yI
ranging over R for I ∈

(V(G)×V(H)
≤2t

)
. The constraints are

Mt(y) := (yI∪J)I,J∈(V(G)×V(H)
≤t ) � 0,∑

h∈V(H)
yI∪{gh} = yI for all I s.t. |I| ≤ 2t − 2 and all g ∈ V(G),

∑
g∈V(G)

yI∪{gh} = yI for all I s.t. |I| ≤ 2t − 2 and all h ∈ V(H),

yI = 0 if I s.t. |I| ≤ 2t is not partial isomorphism
y∅ = 1.



Extras: Sherali–Adams

Let t ≥ 1. The level-t Sherali–Adams relaxation for graph isomorphism has
variables yI ranging over R for I ∈

(V(G)×V(H)
≤t

)
. The constraints are∑

h∈V(H)
yI∪{gh} = yI for all I s.t. |I| ≤ t − 1 and all g ∈ V(G),

∑
g∈V(G)

yI∪{gh} = yI for all I s.t. |I| ≤ t − 1 and all h ∈ V(H),

yI = 0 if I s.t. |I| ≤ t is not partial isomorphism
y∅ = 1.



Extra: Graph Classes

OP PW2t−1 T Wmax{2t−1,2}

T Wt−1 Lt L+
t T W3t−1



The Graph Class Lt

A (t, t)-bilabelled graph is atomic if all its vertices are labelled.

The class Lt is generated by atomic graphs under
• series composition,
• parallel composition with atomic graphs,
• permutation of labels.

1 1

2 2

3 3

4 4
. . .

t t



The Graph Class Lt

A (t, t)-bilabelled graph is atomic if all its vertices are labelled.

The class Lt is generated by atomic graphs under
• series composition,
• parallel composition with atomic graphs,
• permutation of labels.

1 1

2 2

3 3

4 4
. . .

t t
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