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Homomorphism Indistinguishability

graph class F relation ≡F

all graphs isomorphism Lovász (1967)

cycles cospectral adjacency matrices Folklore
planar graphs quantum isomorphism Mančinska and Roberson (2020)
treewidth ≤ k Ck+1-equivalence Dvořák (2010); Dell et al. (2018)

k-dim. Weisfeiler–Leman Cai et al. (1992)
Sherali–Adams hiearchy Atserias and Maneva (2012); Grohe

and Otto (2015)
Pk-coKleisli-isomorphism Dawar et al. (2021)

… …
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Homomorphism Embedding Grohe (2020)
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Homomorphism Indistinguishability

• equivalences from logic, algebraic graph theory, optimisation, category theory,
and quantum information theory have been characterised as homomorphism
indistinguishability relations

• Compare power of relations ≡F1 and ≡F2 by comparing graph classes F1

and F2 Roberson and S. (2023)
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When is an equivalence relation between graphs a
homomorphism indistinguishability relation?
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Properties of Homomorphism Indistinguishability Relations

Observation (≡F is preserved under categorical products)
If G1 ≡F H1 and G2 ≡F H2 then G1 × G2 ≡F H1 × H2.

For every graph F,

hom(F,G1 × G2) = hom(F,G1) hom(F,G2).
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Properties of Homomorphism Indistinguishability Relations

Closure properties of F correspond to preservation properties of ≡F .

Theorem
For every homomorphism distinguishing closed graph class F , tfae:

F is closed under ≡F is preserved under
minors complements G 7→ G
summands disjoint unions (G,H) 7→ G+ H
subgraphs full complements G 7→ Ĝ
induced subgraphs left lexicographic products H 7→ G[H] for every G
contracting edges right lexicographic products G 7→ G[H] for every H.
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induced subgraphs left lexicographic products H 7→ G[H] for every G
contracting edges right lexicographic products G 7→ G[H] for every H.

8 / 13



Properties of Homomorphism Indistinguishability Relations

Closure properties of F correspond to preservation properties of ≡F .

Theorem
For every homomorphism distinguishing closed graph class F , tfae:

F is closed under ≡F is preserved under
minors complements G 7→ G
summands disjoint unions (G,H) 7→ G+ H

subgraphs full complements G 7→ Ĝ
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Homomorphism Distinguishing Closure

A graph class F is homomorphism distinguishing closed if

for all F 6∈ F there exist G and H such that G ≡F H and hom(F,G) 6= hom(F,H).

Conjecture (Roberson (2022))
Every minor-closed union-closed graph class is homomorphism distinguishing
closed.

• treewidth ≤ k, Neuen (2023)
• treedepth ≤ q, Fluck, S., & Spitzer (2023)
• planar graphs, Roberson (2022)
• essentially finite graph classes, generalising Kwiecień et al. (2022)
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Self-complementary Logics

Theorem
For every homomorphism distinguishing closed graph class F , tfae:

F is closed under ≡F is preserved under
minors complements

• Feasibility of integer programming relaxations for graph isomorphism
Graphs are encoded via atomic types of vertex tuples

• Self-complementary logics (L, |=)

For every sentence ϕ ∈ L, there is ϕ ∈ L such that G |= ϕ ⇐⇒ G |= ϕ.
E.g., replace Exy by ¬Exy ∧ (x 6= y).
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Ruling out Homomorphism Indistinguishability Relations

Theorem
For every homomorphism distinguishing closed graph class F , tfae:

F is closed under ≡F is preserved under
minors complements

Corollary (Atserias, Kolaitis, Wu (2021))
FOk-equivalence is not a homomorphism indistinguishability relation.

FOk is self-complementary.

Suppose ≡F characterises FOk-equivalence. Wlog F is minor-closed.

Kk ≡FOk Kk+1 but hom(K1, Kk) 6= hom(K1, Kk+1), so K1 6∈ F , contradiction!
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Graph Minor Theory rules out Homomorphism Indistinguishability

Theorem (Robertson and Seymour (1986))
For a minor-closed graph class F , tfae:

• F has unbounded treewidth,
• F contains all planar graphs.

Corollary
Let L be a self-complementary logic. Suppose that

• L-equivalence is homomorphism indistinguishability relation,
• for every k ∈ N, there exist graphs G and H such that G ≡Ck H and G 6≡L H.

Then all L-equivalent graphs are quantum isomorphic.
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Conclusion

• Closure properties of F correspond to preservation
properties of ≡F .

• Self-complementary logics have homomorphism
indistinguishability characterisations over
minor-closed graph classes (if at all).

• When is an equivalence relation between graphs a
homomorphism indistinguishability relation?
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Pictures

• “Bicycle race scene. A peloton of six cyclists crosses the finish line in front of a
crowded grandstand, observed by a referee.” (1895) by Calvert Lithographic Co.,
Detroit, Michigan, Public Domain, via Wikimedia Commons.
https://commons.wikimedia.org/wiki/File:
Bicycle_race_scene,_1895.jpg

• Encyclopedic manuscript containing allegorical and medical drawings,
http://lccn.loc.gov/50041709, Public domain, via Wikimedia
Commons

https://commons.wikimedia.org/wiki/File:Bicycle _race_scene,_1895.jpg
https://commons.wikimedia.org/wiki/File:Bicycle _race_scene,_1895.jpg
http://lccn.loc.gov/50041709
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