Homomorphism Indistinguishability

1

PhD Defense, 29 November 2024

Tim Seppelt

Research Training Group – Uncertainty and Randomness in Algorithms, Verification,

36

TO A

Copyrighted 1895 La GALVERT 105- (Q DETROIT

T.vanschaik, CC BY-SA 4.0, via Wikimedia Commons; Amy Sherman-Palladino (2000); OpenMoji (CC BY-SA 4.0); Kang et al. (2020)

However, graph isomorphism is

- theoretically elusive and
- practically often inconsequential.

Characterisations

How to characterise \approx ?

Characterisations How to characterise \approx ? **Distinguishing Power** What's the power of \approx ?

Characterisations How to characterise \approx ? **Distinguishing Power** What's the power of \approx ? $\begin{array}{l} \mbox{Complexity} \\ \mbox{How to test} \approx ? \end{array}$

36

graph class \mathcal{F} relation $\equiv_{\mathcal{F}}$ all graphsisomorphism

Lovász (1967)

graph class \mathcal{F} relation $\equiv_{\mathcal{F}}$ all graphsisomorphismcyclesalgebraic graph theory

Lovász (1967) Folklore graph class \mathcal{F} relation $\equiv_{\mathcal{F}}$ all graphsisomorphismLovász (1967)cyclesalgebraic graph theoryFolkloreplanar graphsquantum information theoryMančinska & Roberson (2020)

graph class \mathcal{F} relation $\equiv_{\mathcal{F}}$ all graphsisomorphismcyclesalgebraic graph theoryplanar graphsquantum information theory \mathcal{TW}_k finite model theory

Lovász (1967) Folklore Mančinska & Roberson (2020) Dvořák (2010); Dell, Grohe, & Rattan (2018)

graph class ${\cal F}$	$relation \equiv_\mathcal{F}$	
all graphs	isomorphism	Lovász (1967)
cycles	algebraic graph theory	Folklore
planar graphs	quantum information theory	Mančinska & Roberson (2020)
\mathcal{TW}_k	finite model theory	Dvořák (2010); Dell, Grohe, & Rattan
		(2018)
	graph isomorphism testing	Cai, Fürer, & Immerman (1992)

graph class \mathcal{F} all graphs cycles planar graphs \mathcal{TW}_k **relation** $\equiv_{\mathcal{F}}$ isomorphism algebraic graph theory quantum information theory finite model theory

graph isomorphism testing optimisation

Lovász (1967) Folklore Mančinska & Roberson (2020) Dvořák (2010): Dell. Grohe. & Rattan (2018)Cai. Fürer. & Immerman (1992) Atserias & Maneva (2012): Malkin (2014): Grohe & Otto (2015)

graph class \mathcal{F} rall graphsicyclescplanar graphsc \mathcal{TW}_k f

relation $\equiv_{\mathcal{F}}$ isomorphism algebraic graph theory quantum information theory finite model theory

graph isomorphism testing optimisation

category theory

Lovász (1967) Folklore Mančinska & Roberson (2020) Dvořák (2010): Dell. Grohe. & Rattan (2018)Cai. Fürer. & Immerman (1992) Atserias & Maneva (2012): Malkin (2014): Grohe & Otto (2015) Dawar, Jakl. & Reggio (2021)

graph class \mathcal{F} all graphs cycles planar graphs \mathcal{TW}_k **relation** $\equiv_{\mathcal{F}}$ isomorphism algebraic graph theory quantum information theory finite model theory

graph isomorphism testing optimisation

category theory machine learning

Lovász (1967) Folklore Mančinska & Roberson (2020) Dvořák (2010): Dell. Grohe. & Rattan (2018)Cai. Fürer. & Immerman (1992) Atserias & Maneva (2012): Malkin (2014): Grohe & Otto (2015) Dawar, Jakl. & Reggio (2021) Xu et al. (2018): Morris et al. (2019)

Characterisations How to characterise $\equiv_{\mathcal{F}}$? **Distinguishing Power** What's the power of $\equiv_{\mathcal{F}}$? $\begin{array}{l} \mbox{Complexity} \\ \mbox{How to test} \equiv_{\mathcal{F}}? \end{array}$

 $\begin{array}{l} \mbox{Characterisations}\\ \mbox{How to characterise} \equiv_{\mathcal{F}}? \end{array}$

Distinguishing Power What's the power of $\equiv_{\mathcal{F}}$? **Complexity** How to decide $\equiv_{\mathcal{F}}$?

> positive semi-definite X s.t. $XA_G = A_H X$.

> positive semi-definite X s.t. $XA_G = A_H X$.

semidefinite prog.

semidefinite prog.

Roberson and S. (2023)

Equations homomorphism vectors algebraic operations Graph Class labelled graphs combinatorial operations

labelled graphs \rightarrow

$\frac{\text{homomorphism}}{\text{vectors}} \subseteq \mathbb{R}^{V(G)}$

X s.t. $XA_G = A_H X$ positive semi-definite

X s.t.
$$XA_G = A_H X$$

positive semi-definite

spaces of homomorphism vectors closed under algebraic operations

spaces of homomorphism vectors closed under algebraic operations set of labelled graphs closed under combinatorial operations

matrix property orthogonal

graph class cycles

Specht (1940); Wiegmann (1961)

matrix property orthogonal pseudo-stochastic doubly stochastic **graph class** cycles paths trees

Specht (1940); Wiegmann (1961) Grohe, Rattan, S. (2022) Grohe, Rattan, S. (2022)

matrix property orthogonal pseudo-stochastic doubly stochastic positive semi-definite graph class cycles paths trees \mathcal{L}_k

Specht (1940); Wiegmann (1961) Grohe, Rattan, S. (2022) Grohe, Rattan, S. (2022) Mančinska, Roberson, & Varvitsiotis (2023)

matrix property orthogonal pseudo-stochastic doubly stochastic positive semi-definite quantum permutation easy quantum orthog. graph class cycles paths trees \mathcal{L}_k planar

Specht (1940); Wiegmann (1961) Grohe, Rattan, S. (2022) Grohe, Rattan, S. (2022) Mančinska, Roberson, & Varvitsiotis (2023) Mančinska & Roberson (2020) S. and Spitzer (2024+)

Graph Class labelled graphs combinatorial operations

Graph Class labelled graphs combinatorial operations

Lasserre semidefinite prog.

Graph Class labelled graphs combinatorial operations

Lasserre semidefinite prog.

Homomorphism Indistinguishability

Lasserre semidefinite prog.

Homomorphism Indistinguishability

Characterisations How to characterise $\equiv_{\mathcal{F}}$? **Distinguishing Power** What's the power of $\equiv_{\mathcal{F}}$? **Complexity** How to test $\equiv_{\mathcal{F}}$?

Lasserre semidefinite prog.

6	
5	
4	
3	
2	
1	

:

Sherali–Adams linear prog.

Roberson and S. (2023); Atserias & Maneva (2012); Malkin (2014); Dvořák (2010); Dell, Grohe, & Rattan (2018)

$\mathcal{L}_k \subseteq \mathcal{TW}_{3k-1}$

Roberson and S. (2023); Atserias & Maneva (2012); Malkin (2014); Dvořák (2010); Dell, Grohe, & Rattan (2018)

$\mathcal{L}_k \subseteq \mathcal{TW}_{3k-1}$ \mathcal{L}_k contains a graph of treewidth 3k-1

Roberson and S. (2023); Atserias & Maneva (2012); Malkin (2014); Dvořák (2010); Dell, Grohe, & Rattan (2018)

Definition (Roberson (2022))

A graph class ${\mathcal F}$ is homomorphism distinguishing closed if for all graph classes ${\mathcal K}$

 \mathcal{K} is contained in $\mathcal{F} \iff \equiv_{\mathcal{F}} \text{refines} \equiv_{\mathcal{K}}$.

Definition (Roberson (2022))

A graph class ${\mathcal F}$ is homomorphism distinguishing closed if for all graph classes ${\mathcal K}$

 \mathcal{K} is contained in $\mathcal{F} \iff \equiv_{\mathcal{F}} \text{refines} \equiv_{\mathcal{K}}$.

Definition (Roberson (2022))

A graph class ${\mathcal F}$ is homomorphism distinguishing closed if for all graph classes ${\mathcal K}$

 \mathcal{K} is contained in $\mathcal{F} \iff \equiv_{\mathcal{F}} \text{refines} \equiv_{\mathcal{K}}$.

• compared distinguishing power of Lasserre and Sherali–Adams by comparing TW_k and L_k

- compared distinguishing power of Lasserre and Sherali-Adams by comparing TW_k and L_k
- distinguishing power of $\equiv_{\mathcal{TW}_k}$ is described by fact that \mathcal{TW}_k is homomorphism distinguishing closed

- compared distinguishing power of Lasserre and Sherali-Adams by comparing TW_k and L_k
- distinguishing power of $\equiv_{\mathcal{TW}_k}$ is described by fact that \mathcal{TW}_k is homomorphism distinguishing closed

Theory of Homomorphism Indistinguishability When is a graph class *F* homomorphism distinguishing closed?

Conjecture (Roberson (2022))

Every minor-closed union-closed graph class is homomorphism distinguishing closed.

Conjecture (Roberson (2022))

Every minor-closed union-closed graph class is homomorphism distinguishing closed.

planar graphs
bounded treewidth
bounded treedepth
bounded pathwidth
essentially finite graph classes
outerplanar graphs
Roberson (2022)

For every homomorphism distinguishing closed graph class \mathcal{F} ,

 \mathcal{F} is minor-closed $\iff \equiv_{\mathcal{F}}$ is preserved under complements.

For every homomorphism distinguishing closed graph class \mathcal{F} ,

 \mathcal{F} is minor-closed $\iff \equiv_{\mathcal{F}}$ is preserved under complements.

• Typical graph isomorphism relaxations are preserved under complements.

For every homomorphism distinguishing closed graph class \mathcal{F} ,

 \mathcal{F} is minor-closed $\iff \equiv_{\mathcal{F}}$ is preserved under complements.

- Typical graph isomorphism relaxations are preserved under complements.
- Towards a **theory of homomorphism indistinguishability**, we can focus on minor-closed graph classes.

For every homomorphism distinguishing closed graph class \mathcal{F} ,

 \mathcal{F} is minor-closed $\iff \equiv_{\mathcal{F}}$ is preserved under complements.

- Typical graph isomorphism relaxations are preserved under complements.
- Towards a **theory of homomorphism indistinguishability**, we can focus on minor-closed graph classes.
- Minor-closed graph classes are subject to a rich structure theory.

Characterisations How to characterise $\equiv_{\mathcal{F}}$?

Distinguishing Power What's the power of $\equiv_{\mathcal{F}}$? $\begin{array}{l} \text{Complexity} \\ \text{How to test} \equiv_{\mathcal{F}}? \end{array}$

Let ${\mathcal F}$ be minor-closed and proper.

 $HomInd(\mathcal{F})$

Input Graphs G and H.

Decide $G \equiv_{\mathcal{F}} H$.

Let \mathcal{F} be minor-closed and proper.

 $HomInd(\mathcal{F})$

Input Graphs G and H.

Decide $G \equiv_{\mathcal{F}} H$.

Dell, Grohe, & Rattan (2018); Dvořák (2010); Grohe (2020); Grohe, Rattan, S. (2022)

Let \mathcal{F} be minor-closed and proper. planar HOMIND(\mathcal{F}) **Input** Graphs *G* and *H*. PTIME **Decide** $G \equiv_{\mathcal{F}} H$. \mathcal{TW}_{k} \mathcal{PW}_k \mathcal{TD}_k

Let \mathcal{F} be minor-closed and proper. planar Where is \mathcal{L}_{k} ? HOMIND(\mathcal{F}) **Input** Graphs *G* and *H*. PTIME **Decide** $G \equiv_{\mathcal{F}} H$. \mathcal{TW}_k \mathcal{PW}_{h} \mathcal{TD}_k

For every minor-closed graph class \mathcal{F} of bounded treewidth, HOMIND(\mathcal{F}) is in coRP.

For every minor-closed graph class \mathcal{F} of bounded treewidth, HOMIND(\mathcal{F}) is in coRP.

For every minor-closed graph class \mathcal{F} of bounded treewidth, HOMIND(\mathcal{F}) is in coRP.

For every minor-closed graph class \mathcal{F} of bounded treewidth, HOMIND(\mathcal{F}) is in coRP.

For every minor-closed graph class \mathcal{F} of bounded treewidth, HOMIND(\mathcal{F}) is in coRP.

For every minor-closed graph class \mathcal{F} of bounded treewidth, HOMIND(\mathcal{F}) is in coRP.

Space of homomorphism vectors of labelled trees

Theorem (S. (2024))

For every minor-closed graph class \mathcal{F} of bounded treewidth, HOMIND(\mathcal{F}) is in coRP.

 $\mathcal{F} = \mathsf{trees}$

Theorem (S. (2024))

For every minor-closed graph class \mathcal{F} of bounded treewidth, HOMIND(\mathcal{F}) is in coRP.

Theorem (Courcelle (1990); Robertson & Seymour (2004)) Every minor-closed graph class *F* induces finitely many classes.

Let ${\mathcal F}$ be minor-closed and proper.

Theorem (S. (2024))

If \mathcal{F} has bounded treewidth, then HOMIND(\mathcal{F}) is in coRP. Undecidable

planar

Let ${\mathcal F}$ be minor-closed and proper.

Theorem (S. (2024))

If \mathcal{F} has bounded treewidth, then HOMIND(\mathcal{F}) is in coRP.

Conjecture (S. (2024))

If \mathcal{F} has bounded treewidth, then HOMIND(\mathcal{F}) is in PTIME.

Undecidable planar CORP \mathcal{TW}_{k} \mathcal{L}_{k} \mathcal{PW}_{b} TD_b

Let ${\mathcal F}$ be minor-closed and proper.

Theorem (S. (2024))

If \mathcal{F} has bounded treewidth, then HOMIND(\mathcal{F}) is in coRP.

Conjecture (S. (2024))

If \mathcal{F} has bounded treewidth, then HOMIND(\mathcal{F}) is in PTIME.

Otherwise, $HOMIND(\mathcal{F})$ is undecidable.

Distinguishing Power What's the power of $\equiv_{\mathcal{F}}$? $\begin{array}{l} \text{Complexity} \\ \text{How to test} \equiv_{\mathcal{F}}? \end{array}$

• **Tools:** labelled graphs and homomorphism vectors

- Tools: labelled graphs and homomorphism vectors
- Results: variants of Specht–Wiegmann Theorem

- Tools: labelled graphs and homomorphism vectors
- **Results:** variants of Specht–Wiegmann Theorem
- **Lasserre** is a homomorphism indistinguishability relation.

• Comparing graph isomorphism relaxations by comparing graph classes

- Comparing graph isomorphism relaxations by comparing graph classes
- Determined power of **Lasserre** vis-à-vis Sherali–Adams

- Comparing graph isomorphism relaxations by comparing graph classes
- Determined power of **Lasserre** vis-à-vis Sherali–Adams

- Comparing graph isomorphism relaxations by comparing graph classes
- Determined power of **Lasserre** vis-à-vis Sherali–Adams

Theory of Homomorphism Indistinguishability

• Comparing graph isomorphism relaxations by comparing graph classes

• Determined power of **Lasserre** vis-à-vis Sherali–Adams

Theory of Homomorphism Indistinguishability

• **Result:** minor-closed graph classes play a central role.

- Comparing graph isomorphism relaxations by comparing graph classes
- Determined power of **Lasserre** vis-à-vis Sherali–Adams

Theory of Homomorphism Indistinguishability

- **Result:** minor-closed graph classes play a central role.
- Open: Roberson's conjecture

• **Result:** HOMIND(\mathcal{F}) is in coRP for minor-closed graph classes \mathcal{F} of bounded treewidth.

- **Result:** HOMIND(\mathcal{F}) is in coRP for minor-closed graph classes \mathcal{F} of bounded treewidth.
- **Open:** dichotomy for proper minor-closed graph classes

- **Result:** HOMIND(\mathcal{F}) is in coRP for minor-closed graph classes \mathcal{F} of bounded treewidth.
- **Open:** dichotomy for proper minor-closed graph classes

- **Result:** HOMIND(\mathcal{F}) is in coRP for minor-closed graph classes \mathcal{F} of bounded treewidth.
- **Open:** dichotomy for proper minor-closed graph classes

 $\begin{array}{l} \mbox{Complexity} \\ \mbox{How to decide} \equiv_{\mathcal{F}}? \end{array}$

• Lasserre is in coRP.

Characterisations How to characterise $\equiv_{\mathcal{F}}$? **Distinguishing Power** What's the power of $\equiv_{\mathcal{F}}$? $\begin{array}{l} \text{Complexity} \\ \text{How to test} \equiv_{\mathcal{F}}? \end{array}$

Bibliography i

 Atserias, Albert & Elitza Maneva (2012). 'Sherali–Adams Relaxations and Indistinguishability in Counting Logics'. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference. ITCS '12. Cambridge, Massachusetts: Association for Computing Machinery, pp. 367–379. ISBN: 9781450311151. DOI: 10.1145/2090236.2090265. URL:

https://doi.org/10.1145/2090236.2090265.

- Atserias, Albert & Joanna Ochremiak (2018). 'Definable Ellipsoid Method, Sums-of-Squares Proofs, and the Isomorphism Problem'. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018. Ed. by Anuj Dawar & Erich Grädel. ACM, pp. 66–75. DOI: 10.1145/3209108.3209186. URL:
 - https://doi.org/10.1145/3209108.3209186.

Bibliography ii

- Cai, Jin-Yi, Martin Fürer, & Neil Immerman (1992). 'An optimal lower bound on the number of variables for graph identification'. In: *Combinatorica* 12.4, pp. 389–410. ISSN: 1439-6912. DOI: 10.1007/BF01305232. URL: https://doi.org/10.1007/BF01305232.
- Courcelle, Bruno (Mar. 1990). 'The monadic second-order logic of graphs. I. Recognizable sets of finite graphs'. In: Information and Computation 85.1, pp. 12–75. ISSN: 0890-5401. DOI: 10.1016/0890-5401(90)90043-H. URL: https://www.sciencedirect.com/science/article/pii/ 089054019090043H.
- Dawar, Anuj, Tomáš Jakl, & Luca Reggio (2021). 'Lovász-Type Theorems and Game Comonads'. In: 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021. IEEE, pp. 1–13. DOI: 10.1109/LICS52264.2021.9470609.

- Dell, Holger, Martin Grohe, & Gaurav Rattan (2018). 'Lovász Meets Weisfeiler and Leman'. en. In: 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018), 40:1–40:14. DOI: 10.4230/LIPICS.ICALP.2018.40.
- Dvořák, Zdeněk (Aug. 2010). 'On recognizing graphs by numbers of homomorphisms'. en. In: Journal of Graph Theory 64.4, pp. 330–342. ISSN: 03649024. DOI: 10.1002/jgt.20461. URL: http://doi.wiley.com/10.1002/jgt.20461.

Bibliography iv

- Fluck, Eva, Tim Seppelt, & Gian Luca Spitzer (2024). 'Going Deep and Going Wide: Counting Logic and Homomorphism Indistinguishability over Graphs of Bounded Treedepth and Treewidth'. In: 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024). Ed. by Aniello Murano & Alexandra Silva. Vol. 288. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 27:1–27:17. ISBN: 978-3-95977-310-2. DOI: 10.4230/LIPIcs.CSL.2024.27.
- Grohe, Martin (2020). 'Counting Bounded Tree Depth Homomorphisms'. In: Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science. LICS '20. New York, NY, USA: Association for Computing Machinery, pp. 507–520. ISBN: 978-1-4503-7104-9. DOI: 10.1145/3373718.3394739.

- Grohe, Martin & Martin Otto (2015). 'Pebble Games and Linear Equations'. In: The Journal of Symbolic Logic 80.3, pp. 797–844. ISSN: 00224812, 19435886. DOI: 10.1017/jsl.2015.28. URL: http://www.jstor.org/stable/43864249.
- Grohe, Martin & Pascal Schweitzer (Oct. 2020). 'The Graph Isomorphism Problem'. In: *Commun. ACM* 63.11. Place: New York, NY, USA Publisher: Association for Computing Machinery, pp. 128–134. ISSN: 0001-0782. DOI: 10.1145/3372123. URL: https://doi.org/10.1145/3372123.

Bibliography vi

Kang, Hee Yoon, Changseong Kim, Dongyoung Kim, Young-Jae Lee, Hyun Je Park, Goutam K. Kundu, Young Kyun Kim, Riaz Bibi, Jaebin Jang, Kwang-Hun Lee, Hyun-Woo Kim, Sung-Gyu Yun, Heeyong Kim, & Chang-Keun Kang (Oct. 2020).
 'Identifying patterns in the multitrophic community and food-web structure of a low-turbidity temperate estuarine bay'. In: *Scientific Reports* 10.1. ISSN: 2045-2322. DOI: 10.1038/s41598-020-73628-6. URL:

http://dx.doi.org/10.1038/s41598-020-73628-6.

 Lovász, László (Sept. 1967). 'Operations with structures'. In: Acta Mathematica Academiae Scientiarum Hungarica 18.3, pp. 321–328. ISSN: 1588-2632. DOI: 10.1007/BF02280291. URL: https://doi.org/10.1007/BF02280291.

Bibliography vii

- Malkin, Peter N. (May 2014). 'Sherali-Adams relaxations of graph isomorphism polytopes'. In: Discrete Optimization 12, pp. 73–97. ISSN: 15725286. DOI: 10.1016/j.disopt.2014.01.004. URL: https: //linkinghub.elsevier.com/retrieve/pii/S157252861400005X.
- Mančinska, Laura & David E. Roberson (2020). 'Quantum isomorphism is equivalent to equality of homomorphism counts from planar graphs'. In: 2020 *IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS)*, pp. 661–672. DOI: 10.1109/FOCS46700.2020.00067.
- Mančinska, Laura, David E. Roberson, & Antonios Varvitsiotis (14th July 2023).
 'Graph isomorphism: physical resources, optimization models, and algebraic characterizations'. In: Mathematical Programming. ISSN: 0025-5610, 1436-4646.
 DOI: 10.1007/s10107-023-01989-7. URL:

https://link.springer.com/10.1007/s10107-023-01989-7.

Morris, Christopher, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav Rattan, & Martin Grohe (July 2019). 'Weisfeiler and Leman Go Neural: Higher-Order Graph Neural Networks'. In: *Proceedings of the AAAI Conference on Artificial Intelligence* 33, pp. 4602–4609. ISSN: 2374-3468, 2159-5399. DOI: 10.1609/aaai.v33i01.33014602. URL: https://aaai.org/ojs/index.php/AAAI/article/view/4384.

Bibliography ix

- Neuen. Daniel (2024). 'Homomorphism-Distinguishing Closedness for Graphs of Bounded Tree-Width'. In: 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Ed. by Olaf Beversdorff. Mamadou Moustapha Kanté, Orna Kupferman, & Daniel Lokshtanov. Vol. 289. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik. 53:1–53:12. ISBN: 978-3-95977-311-9. DOI: 10.4230/LIPIcs.STACS.2024.53. URL: https://drops.dagstuhl.de/entities/document/10.4230/ LIPICS, STACS, 2024, 53
- Roberson, David E. (2022). Oddomorphisms and homomorphism indistinguishability over graphs of bounded degree. Number: arXiv:2206.10321. arXiv: 2206.10321[math]. URL: http://arxiv.org/abs/2206.10321.

Bibliography x

- Robertson, Neil & P.D. Seymour (1st Nov. 2004). 'Graph Minors. XX. Wagner's conjecture'. In: Special Issue Dedicated to Professor W.T. Tutte 92.2, pp. 325–357. ISSN: 0095-8956. DOI: 10.1016/j.jctb.2004.08.001. URL: https://www.sciencedirect.com/science/article/pii/S0095895604000784.
- Seppelt, Tim (2023). 'Logical Equivalences, Homomorphism Indistinguishability, and Forbidden Minors'. In: 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Ed. by Jérôme Leroux, Sylvain Lombardy, & David Peleg. Vol. 272. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 82:1–82:15. ISBN: 978-3-95977-292-1. DOI:

10.4230/LIPIcs.MFCS.2023.82.

Bibliography xi

- Seppelt, Tim (2024). 'An Algorithmic Meta Theorem for Homomorphism Indistinguishability'. In: 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Ed. by Rastislav Královič & Antonín Kučera. Vol. 306. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 82:1–82:19. ISBN: 978-3-95977-335-5. DOI: 10.4230/LIPIcs.MFCS.2024.82. URL: https://drops.dagstuhl.de/entities/document/10.4230/ LIPIcs.MFCS.2024.82.
- Specht, Wilhelm (1940). 'Zur Theorie der Matrizen. II.'. In: Jahresbericht der Deutschen Mathematiker-Vereinigung 50, pp. 19–23. ISSN: 0012-0456. URL: http://gdz.sub.uni-goettingen.de/dms/load/toc/?PPN= PPN37721857X_0050&DMDID=dmdlog6.

Bibliography xii

- Wiegmann, N. A. (1961). 'Necessary and sufficient conditions for unitary similarity'. In: *Journal of the Australian Mathematical Society* 2.1. Edition: 2009/04/09 Publisher: Cambridge University Press, pp. 122–126. ISSN: 0004-9735. DOI: 10.1017/S1446788700026422. URL: https://www.cambridge.org/core/article/necessary-and-sufficient-conditions-for-unitary-similarity/E3A80A77ECB666CCB27121652D221935.
- Xu, Keyulu, Weihua Hu, Jure Leskovec, & Stefanie Jegelka (21st Dec. 2018). 'How Powerful are Graph Neural Networks?' In: International Conference on Learning Representations. URL: https://openreview.net/forum?id=ryGs6iA5Km.

Title Picture: 'Bicycle race scene. A peloton of six cyclists crosses the finish line in front of a crowded grandstand, observed by a referee.' (1895) by Calvert Lithographic Co., Detroit, Michigan, Public Domain, via Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Bicycle_race_scene,_1895.jpg