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Determinant Permanent
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has poly-size algebraic circuits
VP vs. VNP
Does perm, admit poly-size algebraic
circuits?
Theorem (Dawar & Wilsenach (2020)) Theorem (Dawar & Wilsenach (2020))
det, admits poly-size circuits. perm, does not admit poly-size

circuits.
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Symmetric circuits

- We consider polynomials in variables x;; for i,j € [n].
- A polynomial / circuit is symmetric if it is invariant under the action of S, x Sp,.

N
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- Symmetric polynomials are functions of (n, n)-vertex bipartite graphs.
E.g, the permanent perm,(G) is the number of perfect matchings in G.






poly-size symmetric circuits
symmetric circuits with poly-sized orbits
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For a bipartite multigraph Fand n € N,

homg p == Z H Xh(uv)

h: AwB—[n]w[n] uveE(F)

Fact

A polynomial is symmetric <= it is a linear combination of hom-polynomials.

Theorem (Dawar, Pago, & S. (2024))
For a sequence of symmetric polynomials (pn)nen, tfae:

1. the p, admit symmetric circuits of poly orbit-size,

2. every pp is a linear combination of hom-polynomials of graphs of bounded
treewidth.
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Computational complexity meets graph structure

Theorem (Curticapean, Dell, & Marx (2017))
Unless #W[1] = FPT, for a collection P of graph motif parameters
p(*) = > arhom(F,x), tfae:

1. the p € P can be evaluated in FPT,
2. the patterns F in P have bounded treewidth.

- Our result is :
- Our result applies to parameters pp(x) = > af n hom(F, ).

- hom-expansion of a graph parameter is not unique
- no complexity monotonicity
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Definition (Dawar & Wang (2017))
A sequence of symmetric polynomials p, has counting width < k
if, for all n-vertex graphs G and H,

G=kH = pn(G) = pn(H).

=, Is equivalence in k-variable first-order logic with counting
quantifiers.



Definition (Dawar & Wang (2017))
A sequence of symmetric polynomials p, has counting width < k
if, for all n-vertex graphs G and H,

G=kH = pn(G) = pn(H).

=, Is equivalence in k-variable first-order logic with counting
quantifiers.

CFl graphs allow to prove counting width lower bounds.
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For a sequence of subgraph polynomials p, = sub(Fp, x) with |F,| € o(n),
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For a sequence of subgraph polynomials p, = sub(Fp, x) with |F,| € o(n),

poly-size symmetric circuits counting width
symmetric circuits with poly-sized orbits bounded by constant

vertex cover number of F,
bounded by constant

i



For a sequence of symmetric polynomials py,

poly-size symmetric circuits counting width
symmetric circuits with poly-sized orbits bounded by constant

linear combinations of homomorphism
polynomials of bounded-treewidth patterns
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