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Algebraic circuits

The complexity of a polynomial is the size of the smallest algebraic circuit
representing it.
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VP vs. VNP

Determinant

detn =
∑

π∈Sn
sgn(π)

n∏
i=1
xi,π(i)

has poly-size algebraic circuits

Permanent

permn =
∑

π∈Sn

n∏
i=1
xi,π(i)

VP vs. VNP
Does permn admit poly-size algebraic
circuits?

Theorem (Dawar & Wilsenach (2020))
detn admits poly-size symmetric circuits.

Theorem (Dawar & Wilsenach (2020))
permn does not admit poly-size
symmetric circuits.
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Symmetric circuits

• We consider polynomials in variables xij for i, j ∈ [n].

• A polynomial / circuit is symmetric if it is invariant under the action of Sn × Sn.

x11 x12 x13 x21 x22 x23 x31 x32 x33

× × ×

+

• Symmetric polynomials are functions of (n,n)-vertex bipartite graphs.
E.g., the permanent permn(G) is the number of perfect matchings in G.
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poly-size
symmetric circuits

symmetric circuits
with poly-sized orbits

counting width
bounded by constant

linear combinations of homomorphism
polynomials of bounded-treewidth patterns

(permn)n∈N 6∈
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For a bipartite multigraph F and n ∈ N,

homF,n :=
∑

h : A]B→[n]][n]

∏
uv∈E(F)

xh(uv)

Fact
A polynomial is symmetric ⇐⇒ it is a linear combination of hom-polynomials.

Theorem (Dawar, Pago, & S. (2024))
For a sequence of symmetric polynomials (pn)n∈N, tfae:

1. the pn admit symmetric circuits of poly orbit-size,
2. every pn is a linear combination of hom-polynomials of graphs of bounded
treewidth.
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Computational complexity meets graph structure

Theorem (Curticapean, Dell, & Marx (2017))
Unless #W[1] = FPT, for a collection P of graph motif parameters
p(?) =

∑
αF hom(F, ?), tfae:

1. the p ∈ P can be evaluated in FPT,
2. the patterns F in P have bounded treewidth.

• Our result is unconditional.
• Our result applies to non-uniform parameters pn(?) =

∑
αF,n hom(F, ?).

• hom-expansion of a graph parameter is not unique
• no complexity monotonicity
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Definition (Dawar & Wang (2017))
A sequence of symmetric polynomials pn has counting width ≤ k
if, for all n-vertex graphs G and H,

G ≡k H =⇒ pn(G) = pn(H).

≡k is equivalence in k-variable first-order logic with counting
quantifiers.

CFI graphs allow to prove counting width lower bounds.

≡k

pn( ) 6= pn( )
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For a sequence of symmetric polynomials pn,
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For a sequence of subgraph polynomials pn = sub(Fn, ?) with |Fn| ∈ o(n),
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counting width
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vertex cover number of Fn
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