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relation =x
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cospectrality

quantum isomorphism
Ck+1-equivalence

Weisfeiler-Leman algorithm
Sherali-Adams LP

P,-coKleisli isomorphism
Graph Neural Networks

Lovasz (1967)

Folklore

Mancinska & Roberson (2020)

Dvorak (2010); Dell, Grohe, & Rattan
(2018)

Cai, Furer, & Immerman (1992)
Atserias & Maneva (2012); Malkin
(2014); Grohe & Otto (2015)

Dawar, Jakl, & Reggio (2021)

Xu, Hu, Leskovec, & Jegelka (2018); Mor-
ris, Ritzert, Fey, Hamilton, Lenssen, Rat-
tan, & Grohe (2019)
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Observation
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Observation
Two graphs have the same number of vertices if, and only if, they are
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Observation
Two graphs have the same number of edges if, and only if, they are
homomorphism indistinguishable over {@-@}.

hom(@-@, G) = 2|E(G)|.
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Observation
Two graphs if, and only if, they are
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Observation
Two graphs have the same degree sequence if, and only if, they are
homomorphism indistinguishable over stars.
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Theorem (Dvorak (2010); Dell, Grohe, & Rattan (2018))

Two graphs are C*-equivalent if and only if, they are homomorphism
indistinguishable over the graphs of treewidth < R.

Theorem (Mancinska & Roberson (2020))

Two graphs are quantum isomorphic if, and only if, they are homomorphism
indistinguishable over all planar graphs.
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Theorem (Dvorak (2010); Dell, Grohe, & Rattan (2018))

Two graphs are C*-equivalent if, and only if, they are homomorphism
indistinguishable over the graphs of treewidth < R.
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Two graphs are C*-equivalent if and only if, they are homomorphism
indistinguishable over the graphs of treewidth < R.

C-formulas can be translated to (linear combinations of) homomorphism vectors
and vice versa.
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Theorem (Dvorak (2010); Dell, Grohe, & Rattan (2018))

Two graphs are C*-equivalent if. and only if, they are homomorphism
indistinguishable over the graphs of treewidth < R.
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Theorem (Dvorak (2010); Dell, Grohe, & Rattan (2018))

Two graphs are C*-equivalent if. and only if, they are homomorphism
indistinguishable over the graphs of treewidth < R.

Cq  treedepth <gq Grohe (2020)
Cg k-pebble forest cover of depth < g Dawar, Jakl, & Reggio (2021)

Fluck, S., Spitzer (2024)
ACF pathwidth < k Montacute & Shah (2022)
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Theorem (Mancinska & Roberson (2020))
Two graphs are quantum isomorphic if, and only if, they are homomorphism
indistinguishable over all planar graphs.
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Two graphs are quantum isomorphic if, and only if, they are homomorphism
indistinguishable over all planar graphs.

Theorem (Lupini, Mancinska, & Roberson (2020))

Two graphs G and H are quantum isomorphic if, and only if, there is a quantum
permutation matrix X such that XAg = ApX.
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Theorem (Mancinska & Roberson (2020))

Two graphs are quantum isomorphic if, and only if, they are homomorphism
indistinguishable over all planar graphs.

Theorem (Lupini, Mancinska, & Roberson (2020))

Two graphs G and H are quantum isomorphic if, and only if, there is a quantum
permutation matrix X such that XAg = AxX.

A matrix X = (x;;) over some C*-algebra is a quantum permutation matrix if

2 .. y¥ I T .
Xp=Xp=Xj, D Xe=1=) Xy
kR R
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XAg = ApX

Lupini, Mancinska, & Roberson (2020); Mancinska & Roberson (2020); Lovasz (1967); Dell, Grohe, & Rattan (2018); Grohe, Rattan, & S. (2022); S. (2024).
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all graphs
permutation

XAg = ApX

Lupini, Mancinska, & Roberson (2020); Mancinska & Roberson (2020); Lovasz (1967); Dell, Grohe, & Rattan (2018); Grohe, Rattan, & S. (2022); S. (2024).
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all graphs
permutation

XAg = ApX
trees cycles and paths
doubly stochastic orthogonal pseudo-stochastic
paths cycles
pseudo-stochastic orthogonal

Lupini, Mancinska, & Roberson (2020); Mancinska & Roberson (2020); Lovasz (1967); Dell, Grohe, & Rattan (2018); Grohe, Rattan, & S. (2022); S. (2024).
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Theorem
There is an orthogonal matrix X such that XAg = AxX if, and only if, G and H are
homomorphism indistinguishable over all cycles.
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Theorem
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Theorem
There is an orthogonal matrix X such that XAg = AxX if, and only if, G and H are
homomorphism indistinguishable over all cycles.

hom(C3, G) = tr(H-@-@—%); = tr(H-k - H-% . H-%); = tr(A}).

Theorem (Specht (1940))
For symmetric matrices A and B, there is an orthogonal matrix X such that
XA = BX if, and only if, tr(A") = tr(B") for all n € N.
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Theorem (Mancinska & Roberson (2020))
Two graphs are quantum isomorphic if, and only If, they are homomorphism
indistinguishable over all planar graphs.
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Theorem (Mancinska & Roberson (2020))
Two graphs are quantum isomorphic if, and only if, they are homomorphism
indistinguishable over all planar graphs.

Proof relies on compact matrix quantum groups and their representation theory via
Woronowicz's Tannaka-Krein duality.
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feasible if, and only if, they are homomorphism indistinguishable over P.
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Theorem (Mancinska & Roberson (2020))
Two graphs are quantum isomorphic if, and only if, they are homomorphism
indistinguishable over all planar graphs.

Proof relies on compact matrix quantum groups and their representation theory via
Woronowicz's Tannaka-Krein duality.

Theorem (Kar, Roberson, S., & Zeman (2025))
Let k > 1. The level-k NPA relaxation of quantum isomorphism for two graphs is
feasible if, and only if, they are homomorphism indistinguishable over P.

- Py is a minor-closed class of planar graphs containing the k x k grid.
- Russell (2023): the NPA hierarchy converges.

23 [ 44



Fi F

Distinguishing Power
What's the power of =#7

24 [ 4k



Are all cospectral graphs isomorphic? Giinthard & Primas (1956)
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Are all cospectral graphs isomorphic? Giinthard & Primas (1956)

No! Collatz & Sinogowitz (1957)

Homomorphism indistinguishability over cycles is not isomorphism.

Are all C*-equivalent graphs isomorphic?

No! Cai, Furer, & Immerman (1992)

Homomorphism indistinguishability over graphs of treewidth < k is not
isomorphism.
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Can =7 be isomorphism for a proper graph class F?
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Can =7 be isomorphism for a proper graph class F?

Theorem (Dvorak (2010))
Two graphs are isomorphic if, and only if, they are homomorphism
indistinguishable over all 2-degenerate graphs.
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Theorem (Dvorak (2010))

Two graphs are isomorphic if, and only if, they are homomorphism
indistinguishable over all 2-degenerate graphs.

Definition (Roberson (2022))
A graph class F is homomorphism distinguishing closed if, for all F ¢ F,

there exist G and H such that G =x H and hom(F’, G) # hom(F', H).
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Can =7 be isomorphism for a proper graph class F?

Theorem (Dvorak (2010))

Two graphs are isomorphic if, and only if, they are homomorphism
indistinguishable over all 2-degenerate graphs.

Definition (Roberson (2022))
A graph class F is homomorphism distinguishing closed if, for all F ¢ F,

there exist G and H such that G = H and hom(F’, G) # hom(F', H).

Which graph classes are homomorphism distinguishing closed?
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Observation _

=F E]:2
If F1 is homomorphism distinguishing closed, then
=z refines = <=  JFjisasuperclass of F,.
F refi 5 1 p f F2 7 5
- optimisation Roberson & S. (2023)
- machine learning Zhang, Gai, Du, Ye, He, & Wang (2024)
- finite model theory Adler, Fluck, S., & Spitzer (2025)
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Which graph classes are homomorphism distinguishing closed?

28 [ 44



Which graph classes are homomorphism distinguishing closed?

Conjecture (Roberson (2022))
Every minor-closed union-closed graph class is homomorphism distinguishing
closed.
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Which graph classes are homomorphism distinguishing closed?

Conjecture (Roberson (2022))
Every minor-closed union-closed graph class is homomorphism distinguishing
closed.

- planar graphs Roberson (2022
- treewidth < k Neuen (2024
- treedepth < g Fluck, S., & Spitzer (2024
- k-pebble forest cover of depth < g Adler & Fluck (2024
- pathwidth < k S. (202

- essentially finite graph classes S. (2023
- outerplanar graphs Neuen & S. (2024

)
)
)
)
)
)
)
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Theorem (Roberson (2022))
For a connected graph G and any graph F, tfae:

1. hom(F, Gg) # hom(F, Gy),
2. there exists a weak oddomorphism F — G.
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Theorem (Roberson (2022))

For a connected graph G and any graph F, tfae:

1. hom(F, Gg) # hom(F, Gy),
2. there exists a weak oddomorphism F — G.

If F — G is a weak oddomorphism, then

- tw(F) > tw(G),

- Fplanar = G planar,
- A(F) > A(G),

- F outerplanar = G outerplanar.

Neuen
Fluck, S., & Spitzer

Roberson
Roberson
Neuen & S.



Let ¢: F — G be a homomorphism.
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Let ¢: F — G be a homomorphism.

Avertex a € V(F) is / R i NF(a) N (u)] s

even / odd for every u € Ng(¢(a)).
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@ is an oddomorphism if
- every a € V(F) is p-even or p-odd,
- every ¢~ '(u) for u € V(G) contains an odd number of
p-odd vertices.
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Let ¢: F — G be a homomorphism.

Avertex a € V(F) is / R it [NF(a) N ()] is
even / odd for every u € Ng(¢(a)).
@ is an oddomorphism if

- every a € V(F) is p-even or p-odd,

- every ¢~ '(u) for u € V(G) contains an odd number of

p-odd vertices.

¢ is a weak oddomorphism if | for some F C Fis an
oddomorphism.

Hypothesis
If F — G is a weak oddomorphism, then G is a minor of F.
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Theorem (S. (2023))
For every homomorphism distinguishing closed graph class F,

F is minor-closed <= =z is preserved under complements.
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F is minor-closed <= =z is preserved under complements.

- Typical graph isomorphism relaxations are preserved under complements.
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Theorem (S. (2023))
For every homomorphism distinguishing closed graph class F,

F is minor-closed <= =z is preserved under complements.

- Typical graph isomorphism relaxations are preserved under complements.

- Towards a theory of homomorphism indistinguishability, we can focus on
minor-closed graph classes.
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Theorem (Roberson (2022))
There are uncountably many homomorphism distinguishing closed graph classes.
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Theorem (Roberson (2022))
There are uncountably many homomorphism distinguishing closed graph classes.

Theorem (van Dobben de Bruyn, Marqués, Roberson, S., Zeman (2025+))

There is a topology whose closed sets are precisely the homomorphism
distinguishing closed sets.
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Let 7 be minor-closed and proper.

HomIND(F)
Input Graphs G and H.
Decide G = H.
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Let 7 be minor-closed and proper.

HomIND(F)
Input Graphs G and H.
Decide G = H.

Dell, Grohe, & Rattan (2018); Dvorak (2010); Grohe (2020); Grohe, Rattan, S.
(2022)
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Undecidable

planar

Let 7 be minor-closed and proper.

HomIND(F)
Input Graphs G and H.
Decide G = H.

Dell, Grohe, & Rattan (2018); Dvorak (2010); Grohe (2020); Grohe, Rattan, S.
(2022); Mancinska & Roberson (2020); Atserias, Mancinska, Roberson, Samal,
Severini, & Varvitsiotis (2019); Slofstra (2019)
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Theorem (S. (2024))
If F is recognisable and of bounded treewidth, then HOMIND(F) is in coRP.
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Theorem (S. (2024))
If F is recognisable and of bounded treewidth, then HOMIND(F) is in coRP.

Reduction to equivalence testing for Q-weighted tree automata, which is LOGSPACE
interreducible with arithmetic circuit identity testing.
Kiefer, Murawski, Ouaknine, Wachter, & Worrell (2013)
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Theorem (S. (2024))
If F is recognisable and of bounded treewidth, then HOMIND(F) is in coRP.

Reduction to equivalence testing for Q-weighted tree automata, which is LOGSPACE
interreducible with arithmetic circuit identity testing.
Kiefer, Murawski, Ouaknine, Wachter, & Worrell (2013)

Theorem (S. (2025+))
If F is recognisable and of bounded pathwidth, then HOMIND(F) is in NC.

Reduction to equivalence testing for Q-weighted automata. Tzeng (1996)

36/ 44



Theorem (S. (2024))
If F is recognisable and of bounded treewidth, then HOMIND(F) is in coRP.

Corollary (S. (2024); Kar, Roberson, S., & Zeman (2025))
The following problems are in coRP:

- exact feasibility of the level-k Lasserre relaxation of graph isomorphism,

- exact feasibility of the level-k NPA relaxation of quantum isomorphism.
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Let F be minor-closed and proper. Undecidable

Theorem (S. (2024)) planar

If F has bounded treewidth, then
HOMIND(F) is in coRP.

38/ 44



Let F be minor-closed and proper.

Theorem (S. (2024))

If F has bounded treewidth, then
HOMIND(F) is in coRP.

Conjecture (S. (2024))

If F has bounded treewidth, then
HOMIND(F) is in PTIME.

Undecidable

planar
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Let F be minor-closed and proper. Undecidable

Theorem (S. (2024)) planar

If F has bounded treewidth, then
HOMIND(F) is in coRP.

Conjecture (S. (2024))

If F has bounded treewidth, then
HOMIND(F) is in PTIME.

Otherwise, HOMIND(F) is undecidable.

38/ 44
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- Comparing graph isomorphism relaxations by

=/ =72 comparing graph classes
Theory of Homomorphism Indistinguishability
- minor-closed graph classes play
Fi F2 a central role.

- Open: Roberson’s conjecture
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Undecidable Theory of Homomorphism Indistinguishability
planar

- HOMIND(F) is in coRP for minor-closed graph
classes F of bounded treewidth.

CoRP

no - Open: dichotomy for proper minor-closed graph
O classes
TDy
- coRP-algorithms for SDP relaxations of
Complexity (quantum) isomorphism
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Homomorphism Indistinguishability Zoo
tseppelt.github.io/homind-database
Graph classes and their homomorphism indistinguishability properties.
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